These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
182 related items for PubMed ID: 26238949
1. OsPRR37 and Ghd7 are the major genes for general combining ability of DTH, PH and SPP in rice. Liu C, Song G, Zhou Y, Qu X, Guo Z, Liu Z, Jiang D, Yang D. Sci Rep; 2015 Aug 04; 5():12803. PubMed ID: 26238949 [Abstract] [Full Text] [Related]
2. Genome-wide association analyses reveal the genetic basis of combining ability in rice. Chen J, Zhou H, Xie W, Xia D, Gao G, Zhang Q, Wang G, Lian X, Xiao J, He Y. Plant Biotechnol J; 2019 Nov 04; 17(11):2211-2222. PubMed ID: 31004558 [Abstract] [Full Text] [Related]
3. Validation and characterization of Ghd7.1, a major quantitative trait locus with pleiotropic effects on spikelets per panicle, plant height, and heading date in rice (Oryza sativa L.). Liu T, Liu H, Zhang H, Xing Y. J Integr Plant Biol; 2013 Oct 04; 55(10):917-27. PubMed ID: 23692054 [Abstract] [Full Text] [Related]
4. Transcriptome analysis of near-isogenic line provides novel insights into genes associated with panicle traits regulation in rice. Zhang W, Sun P, He Q, Shu F, Deng H. PLoS One; 2018 Oct 04; 13(6):e0199077. PubMed ID: 29924832 [Abstract] [Full Text] [Related]
5. Combinations of Hd2 and Hd4 genes determine rice adaptability to Heilongjiang Province, northern limit of China. Li X, Liu H, Wang M, Liu H, Tian X, Zhou W, Lü T, Wang Z, Chu C, Fang J, Bu Q. J Integr Plant Biol; 2015 Aug 04; 57(8):698-707. PubMed ID: 25557147 [Abstract] [Full Text] [Related]
6. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q. Nat Genet; 2008 Jun 04; 40(6):761-7. PubMed ID: 18454147 [Abstract] [Full Text] [Related]
7. The phenotypic predisposition of the parent in F1 hybrid is correlated with transcriptome preference of the positive general combining ability parent. Song G, Guo Z, Liu Z, Qu X, Jiang D, Wang W, Zhu Y, Yang D. BMC Genomics; 2014 Apr 22; 15():297. PubMed ID: 24755044 [Abstract] [Full Text] [Related]
8. Association analysis between constructed SNPLDBs and GCA effects of 9 quality-related traits in parents of hybrid rice (Oryza sativa L.). Eltahawy MS, Ali N, Zaid IU, Li D, Abdulmajid D, Bux L, Wang H, Hong D. BMC Genomics; 2020 Jan 09; 21(1):31. PubMed ID: 31918652 [Abstract] [Full Text] [Related]
9. Discovery and mapping of genomic regions governing economically important traits of Basmati rice. Vemireddy LR, Noor S, Satyavathi VV, Srividhya A, Kaliappan A, Parimala S, Bharathi PM, Deborah DA, Rao KV, Shobharani N, Siddiq EA, Nagaraju J. BMC Plant Biol; 2015 Aug 21; 15():207. PubMed ID: 26293787 [Abstract] [Full Text] [Related]
10. Quantitative Trait Locus Mapping of the Combining Ability for Yield-Related Traits in Wild Rice Oryza longistaminata. Fan F, Long W, Liu M, Yuan H, Pan G, Li N, Li S. J Agric Food Chem; 2019 Aug 14; 67(32):8766-8772. PubMed ID: 31313921 [Abstract] [Full Text] [Related]
11. Quantitative trait loci identification and meta-analysis for rice panicle-related traits. Wu Y, Huang M, Tao X, Guo T, Chen Z, Xiao W. Mol Genet Genomics; 2016 Oct 14; 291(5):1927-40. PubMed ID: 27380139 [Abstract] [Full Text] [Related]
12. Genetic mapping of a QTL controlling source-sink size and heading date in rice. Zhan X, Sun B, Lin Z, Gao Z, Yu P, Liu Q, Shen X, Zhang Y, Chen D, Cheng S, Cao L. Gene; 2015 Oct 25; 571(2):263-70. PubMed ID: 26123916 [Abstract] [Full Text] [Related]
13. Fine mapping and candidate gene analysis of a major QTL for panicle structure in rice. Peng Y, Gao Z, Zhang B, Liu C, Xu J, Ruan B, Hu J, Dong G, Guo L, Liang G, Qian Q. Plant Cell Rep; 2014 Nov 25; 33(11):1843-50. PubMed ID: 25079308 [Abstract] [Full Text] [Related]
14. Fine mapping of a quantitative trait locus for spikelet number per panicle in a new plant type rice and evaluation of a near-isogenic line for grain productivity. Sasaki K, Fujita D, Koide Y, Lumanglas PD, Gannaban RB, Tagle AG, Obara M, Fukuta Y, Kobayashi N, Ishimaru T. J Exp Bot; 2017 May 17; 68(11):2693-2702. PubMed ID: 28582550 [Abstract] [Full Text] [Related]
15. [Two pleiotropic intervals of rice were assessed using NILs constructed by two methods]. Zhang YS, Wu W, Xu CG. Yi Chuan; 2008 Jun 17; 30(6):781-7. PubMed ID: 18550504 [Abstract] [Full Text] [Related]
16. Artificial selection in the expansion of rice cultivation. Fujino K, Kawahara Y, Shirasawa K. Theor Appl Genet; 2022 Jan 17; 135(1):291-299. PubMed ID: 34731272 [Abstract] [Full Text] [Related]
17. Analysis of quantitative trait loci affecting chlorophyll content of rice leaves in a double haploid population and two backcross populations. Jiang G, Zeng J, He Y. Gene; 2014 Feb 25; 536(2):287-95. PubMed ID: 24361205 [Abstract] [Full Text] [Related]
18. Metabolic prediction of important agronomic traits in hybrid rice (Oryza sativa L.). Dan Z, Hu J, Zhou W, Yao G, Zhu R, Zhu Y, Huang W. Sci Rep; 2016 Feb 24; 6():21732. PubMed ID: 26907211 [Abstract] [Full Text] [Related]
19. [Analysis of additive and AE interaction effects of QTLs controlling plant height, heading date and panicle number in rice (Oryza sativa L.)]. Yuan AP, Cao LY, Zhuang JY, Li RZ, Zheng KL, Zhu J, Cheng SH. Yi Chuan Xue Bao; 2003 Oct 24; 30(10):899-906. PubMed ID: 14669505 [Abstract] [Full Text] [Related]
20. Association mapping for general combining ability with yield, plant height and ear height using F1 population in maize. Zheng Y, Han X, Zhao Y, Zhu L, Huang Y, Jia X, Zhang Z, Chen J, Guo J. PLoS One; 2021 Oct 24; 16(10):e0258327. PubMed ID: 34653186 [Abstract] [Full Text] [Related] Page: [Next] [New Search]