These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
499 related items for PubMed ID: 26245712
1. Salt-Responsive Zwitterionic Polymer Brushes with Tunable Friction and Antifouling Properties. Yang J, Chen H, Xiao S, Shen M, Chen F, Fan P, Zhong M, Zheng J. Langmuir; 2015 Aug 25; 31(33):9125-33. PubMed ID: 26245712 [Abstract] [Full Text] [Related]
2. Salt-responsive polyzwitterionic materials for surface regeneration between switchable fouling and antifouling properties. Chen H, Yang J, Xiao S, Hu R, Bhaway SM, Vogt BD, Zhang M, Chen Q, Ma J, Chang Y, Li L, Zheng J. Acta Biomater; 2016 Aug 25; 40():62-69. PubMed ID: 26965396 [Abstract] [Full Text] [Related]
3. Structural Dependence of Salt-Responsive Polyzwitterionic Brushes with an Anti-Polyelectrolyte Effect. Xiao S, Zhang Y, Shen M, Chen F, Fan P, Zhong M, Ren B, Yang J, Zheng J. Langmuir; 2018 Jan 09; 34(1):97-105. PubMed ID: 29232140 [Abstract] [Full Text] [Related]
4. Wettability and antifouling behavior on the surfaces of superhydrophilic polymer brushes. Kobayashi M, Terayama Y, Yamaguchi H, Terada M, Murakami D, Ishihara K, Takahara A. Langmuir; 2012 May 08; 28(18):7212-22. PubMed ID: 22500465 [Abstract] [Full Text] [Related]
5. Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties. Jin X, Yuan J, Shen J. Colloids Surf B Biointerfaces; 2016 Sep 01; 145():275-284. PubMed ID: 27208441 [Abstract] [Full Text] [Related]
6. Molecular level studies on interfacial hydration of zwitterionic and other antifouling polymers in situ. Leng C, Sun S, Zhang K, Jiang S, Chen Z. Acta Biomater; 2016 Aug 01; 40():6-15. PubMed ID: 26923530 [Abstract] [Full Text] [Related]
7. Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity. Gao G, Yu K, Kindrachuk J, Brooks DE, Hancock RE, Kizhakkedathu JN. Biomacromolecules; 2011 Oct 10; 12(10):3715-27. PubMed ID: 21902171 [Abstract] [Full Text] [Related]
8. Responsive Copolymer Brushes of Poly[(2-(Methacryloyloxy)Ethyl) Trimethylammonium Chloride] (PMETAC) and Poly((1)H,(1)H,(2)H,(2)H-Perfluorodecyl acrylate) (PPFDA) to Modulate Surface Wetting Properties. Politakos N, Azinas S, Moya SE. Macromol Rapid Commun; 2016 Apr 10; 37(7):662-7. PubMed ID: 26872001 [Abstract] [Full Text] [Related]
9. Combination of AFM and Electrochemical QCM-D for Probing Zwitterionic Polymer Brushes in Water: Visualization of Ionic Strength and Surface Potential Effects. Lin CH, Luo SC. Langmuir; 2021 Oct 26; 37(42):12476-12486. PubMed ID: 34648298 [Abstract] [Full Text] [Related]
10. Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. Zhang Z, Chen S, Chang Y, Jiang S. J Phys Chem B; 2006 Jun 08; 110(22):10799-804. PubMed ID: 16771329 [Abstract] [Full Text] [Related]
11. Tribological properties of hydrophilic polymer brushes under wet conditions. Kobayashi M, Takahara A. Chem Rec; 2010 Aug 08; 10(4):208-16. PubMed ID: 20533448 [Abstract] [Full Text] [Related]
12. Synthesis and characterization of antifouling poly(N-acryloylaminoethoxyethanol) with ultralow protein adsorption and cell attachment. Chen H, Zhang M, Yang J, Zhao C, Hu R, Chen Q, Chang Y, Zheng J. Langmuir; 2014 Sep 02; 30(34):10398-409. PubMed ID: 25127733 [Abstract] [Full Text] [Related]
13. Antifouling Properties of Fluoropolymer Brushes toward Organic Polymers: The Influence of Composition, Thickness, Brush Architecture, and Annealing. Wang Z, Zuilhof H. Langmuir; 2016 Jul 05; 32(26):6571-81. PubMed ID: 27332543 [Abstract] [Full Text] [Related]
14. Bioactive zwitterionic polymer brushes grafted from silicon wafers via SI-ATRP for enhancement of antifouling properties and endothelial cell selectivity. Wei Y, Zhang J, Feng X, Liu D. J Biomater Sci Polym Ed; 2017 Dec 05; 28(18):2101-2116. PubMed ID: 28891389 [Abstract] [Full Text] [Related]
15. Polymer brushes interfacing blood as a route toward high performance blood contacting devices. Surman F, Riedel T, Bruns M, Kostina NY, Sedláková Z, Rodriguez-Emmenegger C. Macromol Biosci; 2015 May 05; 15(5):636-46. PubMed ID: 25644402 [Abstract] [Full Text] [Related]
16. Reversible electrochemical switching of polymer brushes grafted onto conducting polymer films. Pei Y, Travas-Sejdic J, Williams DE. Langmuir; 2012 May 29; 28(21):8072-83. PubMed ID: 22551237 [Abstract] [Full Text] [Related]
17. Adhesion and friction properties of polymer brushes: fluoro versus nonfluoro polymer brushes at varying thickness. Bhairamadgi NS, Pujari SP, Leermakers FA, van Rijn CJ, Zuilhof H. Langmuir; 2014 Mar 04; 30(8):2068-76. PubMed ID: 24555721 [Abstract] [Full Text] [Related]
18. Enhanced stability of low fouling zwitterionic polymer brushes in seawater with diblock architecture. Quintana R, Gosa M, Jańczewski D, Kutnyanszky E, Vancso GJ. Langmuir; 2013 Aug 27; 29(34):10859-67. PubMed ID: 23876125 [Abstract] [Full Text] [Related]
19. Electric Assisted Salt-Responsive Bacterial Killing and Release of Polyzwitterionic Brushes in Low-Concentration Salt Solution. Wu J, Zhang D, Wang Y, Mao S, Xiao S, Chen F, Fan P, Zhong M, Tan J, Yang J. Langmuir; 2019 Jun 25; 35(25):8285-8293. PubMed ID: 31194566 [Abstract] [Full Text] [Related]
20. Design of salt-responsive and regenerative antibacterial polymer brushes with integrated bacterial resistance, killing, and release properties. Wang Y, Wu J, Zhang D, Chen F, Fan P, Zhong M, Xiao S, Chang Y, Gong X, Yang J, Zheng J. J Mater Chem B; 2019 Oct 14; 7(38):5762-5774. PubMed ID: 31465075 [Abstract] [Full Text] [Related] Page: [Next] [New Search]