These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


933 related items for PubMed ID: 26249577

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration.
    Pati F, Song TH, Rijal G, Jang J, Kim SW, Cho DW.
    Biomaterials; 2015 Jan; 37():230-41. PubMed ID: 25453953
    [Abstract] [Full Text] [Related]

  • 24. 3D printed Polylactid Acid based porous scaffold for bone tissue engineering: an in vitro study.
    Bodnárová S, Gromošová S, Hudák R, Rosocha J, Živčák J, Plšíková J, Vojtko M, Tóth T, Harvanová D, Ižariková G, Danišovič Ľ.
    Acta Bioeng Biomech; 2019 Jan; 21(4):101-110. PubMed ID: 32022801
    [Abstract] [Full Text] [Related]

  • 25. Fabrication of novel high performance ductile poly(lactic acid) nanofiber scaffold coated with poly(vinyl alcohol) for tissue engineering applications.
    Abdal-Hay A, Hussein KH, Casettari L, Khalil KA, Hamdy AS.
    Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():143-150. PubMed ID: 26706517
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Novel porous scaffolds of poly(lactic acid) produced by phase-separation using room temperature ionic liquid and the assessments of biocompatibility.
    Lee HY, Jin GZ, Shin US, Kim JH, Kim HW.
    J Mater Sci Mater Med; 2012 May; 23(5):1271-9. PubMed ID: 22382734
    [Abstract] [Full Text] [Related]

  • 28. Cryogenic 3D printing for producing hierarchical porous and rhBMP-2-loaded Ca-P/PLLA nanocomposite scaffolds for bone tissue engineering.
    Wang C, Zhao Q, Wang M.
    Biofabrication; 2017 Jun 07; 9(2):025031. PubMed ID: 28589918
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly(ε-caprolactone) 3D-printed scaffolds compared to RGD immobilized scaffolds.
    Zamani Y, Mohammadi J, Amoabediny G, Visscher DO, Helder MN, Zandieh-Doulabi B, Klein-Nulend J.
    Biomed Mater; 2018 Nov 13; 14(1):015008. PubMed ID: 30421722
    [Abstract] [Full Text] [Related]

  • 31. Triple PLGA/PCL Scaffold Modification Including Silver Impregnation, Collagen Coating, and Electrospinning Significantly Improve Biocompatibility, Antimicrobial, and Osteogenic Properties for Orofacial Tissue Regeneration.
    Qian Y, Zhou X, Zhang F, Diekwisch TGH, Luan X, Yang J.
    ACS Appl Mater Interfaces; 2019 Oct 16; 11(41):37381-37396. PubMed ID: 31517483
    [Abstract] [Full Text] [Related]

  • 32. In situ gold nanoparticle growth on polydopamine-coated 3D-printed scaffolds improves osteogenic differentiation for bone tissue engineering applications: in vitro and in vivo studies.
    Lee SJ, Lee HJ, Kim SY, Seok JM, Lee JH, Kim WD, Kwon IK, Park SY, Park SA.
    Nanoscale; 2018 Aug 23; 10(33):15447-15453. PubMed ID: 30091763
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Monolithic calcium phosphate/poly(lactic acid) composite versus calcium phosphate-coated poly(lactic acid) for support of osteogenic differentiation of human mesenchymal stromal cells.
    Tahmasebi Birgani Z, van Blitterswijk CA, Habibovic P.
    J Mater Sci Mater Med; 2016 Mar 23; 27(3):54. PubMed ID: 26787486
    [Abstract] [Full Text] [Related]

  • 36. A comparison of polymer and polymer-hydroxyapatite composite tissue engineered scaffolds for use in bone regeneration. An in vitro and in vivo study.
    Tayton E, Purcell M, Aarvold A, Smith JO, Briscoe A, Kanczler JM, Shakesheff KM, Howdle SM, Dunlop DG, Oreffo RO.
    J Biomed Mater Res A; 2014 Aug 23; 102(8):2613-24. PubMed ID: 24038868
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Metal Ion Augmented Mussel Inspired Polydopamine Immobilized 3D Printed Osteoconductive Scaffolds for Accelerated Bone Tissue Regeneration.
    Ghorai SK, Dutta A, Roy T, Guha Ray P, Ganguly D, Ashokkumar M, Dhara S, Chattopadhyay S.
    ACS Appl Mater Interfaces; 2022 Jun 29; 14(25):28455-28475. PubMed ID: 35715225
    [Abstract] [Full Text] [Related]

  • 39. Three-dimensional printed polycaprolactone-based scaffolds provide an advantageous environment for osteogenic differentiation of human adipose-derived stem cells.
    Rumiński S, Ostrowska B, Jaroszewicz J, Skirecki T, Włodarski K, Święszkowski W, Lewandowska-Szumieł M.
    J Tissue Eng Regen Med; 2018 Jan 29; 12(1):e473-e485. PubMed ID: 27599449
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 47.