These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
144 related items for PubMed ID: 26255131
1. Biofertilization with Azospirillum brasilense improves in vitro culture of Handroanthus ochraceus, a forestry, ornamental and medicinal plant. Llorente BE, Alasia MA, Larraburu EE. N Biotechnol; 2016 Jan 25; 33(1):32-40. PubMed ID: 26255131 [Abstract] [Full Text] [Related]
2. Micropropagation of photinia employing rhizobacteria to promote root development. Larraburu EE, Carletti SM, Rodríguez Cáceres EA, Llorente BE. Plant Cell Rep; 2007 Jun 25; 26(6):711-7. PubMed ID: 17205338 [Abstract] [Full Text] [Related]
3. In vitro propagation of fraser photinia using Azospirillum-mediated root development. Llorente BE, Larraburu EE. Methods Mol Biol; 2013 Jun 25; 11013():245-58. PubMed ID: 23179704 [Abstract] [Full Text] [Related]
4. Elemental composition of strawberry plants inoculated with the plant growth-promoting bacterium Azospirillum brasilense REC3, assessed with scanning electron microscopy and energy dispersive X-ray analysis. Guerrero-Molina MF, Lovaisa NC, Salazar SM, Díaz-Ricci JC, Pedraza RO. Plant Biol (Stuttg); 2014 Jul 25; 16(4):726-31. PubMed ID: 24148195 [Abstract] [Full Text] [Related]
5. Enhanced micropropagation response and biocontrol effect of Azospirillum brasilense Sp245 on Prunus cerasifera L. clone Mr.S 2/5 plants. Russo A, Vettori L, Felici C, Fiaschi G, Morini S, Toffanin A. J Biotechnol; 2008 Apr 30; 134(3-4):312-9. PubMed ID: 18358553 [Abstract] [Full Text] [Related]
6. Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Cohen AC, Bottini R, Pontin M, Berli FJ, Moreno D, Boccanlandro H, Travaglia CN, Piccoli PN. Physiol Plant; 2015 Jan 30; 153(1):79-90. PubMed ID: 24796562 [Abstract] [Full Text] [Related]
7. Azospirillum brasilense Az39 restricts cadmium entrance into wheat plants and mitigates cadmium stress. Vazquez A, Zawoznik M, Benavides MP, Groppa MD. Plant Sci; 2021 Nov 30; 312():111056. PubMed ID: 34620450 [Abstract] [Full Text] [Related]
8. Localization and survival of Azospirillum brasilense Az39 in soybean leaves. Puente ML, Maroniche GA, Panepucci M, Sabio Y García J, García JE, Criado MV, Molina R, Cassán F. Lett Appl Microbiol; 2021 May 30; 72(5):626-633. PubMed ID: 33354785 [Abstract] [Full Text] [Related]
9. Physiological, structural and molecular traits activated in strawberry plants after inoculation with the plant growth-promoting bacterium Azospirillum brasilense REC3. Guerrero-Molina MF, Lovaisa NC, Salazar SM, Martínez-Zamora MG, Díaz-Ricci JC, Pedraza RO. Plant Biol (Stuttg); 2015 May 30; 17(3):766-73. PubMed ID: 25280241 [Abstract] [Full Text] [Related]
10. Compatibility of Azospirillum brasilense and Pseudomonas fluorescens in growth promotion of groundnut ( Arachis hypogea L.). Prasad AA, Babu S. An Acad Bras Cienc; 2017 May 30; 89(2):1027-1040. PubMed ID: 28489199 [Abstract] [Full Text] [Related]
11. Assessing the efficacy of co-inoculation of wheat seedlings with the associative bacteria Paenibacillus polymyxa 1465 and Azospirillum brasilense Sp245. Yegorenkova IV, Tregubova KV, Burygin GL, Matora LY, Ignatov VV. Can J Microbiol; 2016 Mar 30; 62(3):279-85. PubMed ID: 26863134 [Abstract] [Full Text] [Related]
12. Quantification of Azospirillum brasilense FP2 Bacteria in Wheat Roots by Strain-Specific Quantitative PCR. Stets MI, Alqueres SM, Souza EM, Pedrosa Fde O, Schmid M, Hartmann A, Cruz LM. Appl Environ Microbiol; 2015 Oct 30; 81(19):6700-9. PubMed ID: 26187960 [Abstract] [Full Text] [Related]
13. Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria. do Amaral FP, Pankievicz VC, Arisi AC, de Souza EM, Pedrosa F, Stacey G. Plant Mol Biol; 2016 Apr 30; 90(6):689-97. PubMed ID: 26873699 [Abstract] [Full Text] [Related]
14. Oxidative and antioxidative responses in the wheat-Azospirillum brasilense interaction. Méndez-Gómez M, Castro-Mercado E, Alexandre G, García-Pineda E. Protoplasma; 2016 Mar 30; 253(2):477-86. PubMed ID: 25952083 [Abstract] [Full Text] [Related]
15. Functioning of plant-bacterial associations under osmotic stress in vitro. Evseeva NV, Tkachenko OV, Denisova AY, Burygin GL, Veselov DS, Matora LY, Shchyogolev SY. World J Microbiol Biotechnol; 2019 Nov 29; 35(12):195. PubMed ID: 31784916 [Abstract] [Full Text] [Related]
16. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth. Molina-Romero D, Baez A, Quintero-Hernández V, Castañeda-Lucio M, Fuentes-Ramírez LE, Bustillos-Cristales MDR, Rodríguez-Andrade O, Morales-García YE, Munive A, Muñoz-Rojas J. PLoS One; 2017 Nov 29; 12(11):e0187913. PubMed ID: 29117218 [Abstract] [Full Text] [Related]
17. Systemic induction of monoterpene biosynthesis in Origanumxmajoricum by soil bacteria. Banchio E, Bogino PC, Santoro M, Torres L, Zygadlo J, Giordano W. J Agric Food Chem; 2010 Jan 13; 58(1):650-4. PubMed ID: 20000572 [Abstract] [Full Text] [Related]
18. Surface colonization by Azospirillum brasilense SM in the indole-3-acetic acid dependent growth improvement of sorghum. Kochar M, Srivastava S. J Basic Microbiol; 2012 Apr 13; 52(2):123-31. PubMed ID: 21656820 [Abstract] [Full Text] [Related]
19. Natural occurrence of Azospirillum brasilense in petunia with capacity to improve plant growth and flowering. Toffoli LM, Martínez-Zamora MG, Medrano NN, Fontana CA, Lovaisa NC, Delaporte-Quintana P, Elias JM, Salazar SM, Pedraza RO. J Basic Microbiol; 2021 Jul 13; 61(7):662-673. PubMed ID: 34057226 [Abstract] [Full Text] [Related]
20. In vitro propagation of jojoba. Llorente BE, Apóstolo NM. Methods Mol Biol; 2013 Jul 13; 11013():19-31. PubMed ID: 23179687 [Abstract] [Full Text] [Related] Page: [Next] [New Search]