These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


144 related items for PubMed ID: 26255131

  • 21. Modulation of nitrogen metabolism of maize plants inoculated with Azospirillum brasilense and Herbaspirillum seropedicae.
    da Fonseca Breda FA, da Silva TFR, Dos Santos SG, Alves GC, Reis VM.
    Arch Microbiol; 2019 May; 201(4):547-558. PubMed ID: 30448870
    [Abstract] [Full Text] [Related]

  • 22. Effect of arsenic on tolerance mechanisms of two plant growth-promoting bacteria used as biological inoculants.
    Armendariz AL, Talano MA, Wevar Oller AL, Medina MI, Agostini E.
    J Environ Sci (China); 2015 Jul 01; 33():203-10. PubMed ID: 26141894
    [Abstract] [Full Text] [Related]

  • 23. 2,4-Dichlorophenoxyacetic acid affects the attachment of Azospirillum brasilense Cd to maize roots.
    Jofré E, Mori G, Castro S, Fabra A, Rivarola V, Balegno H.
    Toxicology; 1996 Jan 22; 107(1):9-15. PubMed ID: 8597034
    [Abstract] [Full Text] [Related]

  • 24. Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants.
    Rodríguez-Salazar J, Suárez R, Caballero-Mellado J, Iturriaga G.
    FEMS Microbiol Lett; 2009 Jul 22; 296(1):52-9. PubMed ID: 19459961
    [Abstract] [Full Text] [Related]

  • 25. Surface characteristics of Azospirillum brasilense in relation to cell aggregation and attachment to plant roots.
    Burdman S, Okon Y, Jurkevitch E.
    Crit Rev Microbiol; 2000 Jul 22; 26(2):91-110. PubMed ID: 10890352
    [Abstract] [Full Text] [Related]

  • 26. High frequency axillary bud multiplication and ex vitro rooting of Wedelia chinensis (Osbeck) Merr.--a medicinal plant.
    Martin KP, Beena MR, Joseph D.
    Indian J Exp Biol; 2003 Mar 22; 41(3):262-6. PubMed ID: 15267158
    [Abstract] [Full Text] [Related]

  • 27. Azospirillum brasilense inoculation counteracts the induction of nitrate uptake in maize plants.
    Pii Y, Aldrighetti A, Valentinuzzi F, Mimmo T, Cesco S.
    J Exp Bot; 2019 Feb 20; 70(4):1313-1324. PubMed ID: 30715422
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Increased acidification in the rhizosphere of cactus seedlings induced by Azospirillum brasilense.
    Carrillo AE, Li CY, Bashan Y.
    Naturwissenschaften; 2002 Sep 20; 89(9):428-32. PubMed ID: 12435098
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. The nature of the interaction Azospirillum-Arabidopsis determine the molecular and morphological changes in root and plant growth promotion.
    Méndez-Gómez M, Barrera-Ortiz S, Castro-Mercado E, López-Bucio J, García-Pineda E.
    Protoplasma; 2021 Jan 20; 258(1):179-189. PubMed ID: 33009649
    [Abstract] [Full Text] [Related]

  • 34. Biochemical and molecular characterization of arsenic response from Azospirillum brasilense Cd, a bacterial strain used as plant inoculant.
    Vezza ME, Olmos Nicotra MF, Agostini E, Talano MA.
    Environ Sci Pollut Res Int; 2020 Jan 20; 27(2):2287-2300. PubMed ID: 31776908
    [Abstract] [Full Text] [Related]

  • 35. Rhizobacteria Inoculation Effects on Phytohormone Status of Potato Microclones Cultivated In Vitro under Osmotic Stress.
    Arkhipova TN, Evseeva NV, Tkachenko OV, Burygin GL, Vysotskaya LB, Akhtyamova ZA, Kudoyarova GR.
    Biomolecules; 2020 Aug 24; 10(9):. PubMed ID: 32847137
    [Abstract] [Full Text] [Related]

  • 36. Inoculation with Trichoderma harzianum and Azospirillum brasilense increases nutrition and yield of hydroponic lettuce.
    Moreira VA, Oliveira CEDS, Jalal A, Gato IMB, Oliveira TJSS, Boleta GHM, Giolo VM, Vitória LS, Tamburi KV, Filho MCMT.
    Arch Microbiol; 2022 Jun 30; 204(7):440. PubMed ID: 35771351
    [Abstract] [Full Text] [Related]

  • 37. Effects of heavy metals on plant-associated rhizobacteria: comparison of endophytic and non-endophytic strains of Azospirillum brasilense.
    Kamnev AA, Tugarova AV, Antonyuk LP, Tarantilis PA, Polissiou MG, Gardiner PH.
    J Trace Elem Med Biol; 2005 Jun 30; 19(1):91-5. PubMed ID: 16240678
    [Abstract] [Full Text] [Related]

  • 38. The effect of native and ACC deaminase-containing Azospirillum brasilense Cd1843 on the rooting of carnation cuttings.
    Li Q, Saleh-Lakha S, Glick BR.
    Can J Microbiol; 2005 Jun 30; 51(6):511-4. PubMed ID: 16121231
    [Abstract] [Full Text] [Related]

  • 39. Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation.
    Perrig D, Boiero ML, Masciarelli OA, Penna C, Ruiz OA, Cassán FD, Luna MV.
    Appl Microbiol Biotechnol; 2007 Jul 30; 75(5):1143-50. PubMed ID: 17345081
    [Abstract] [Full Text] [Related]

  • 40. [Rapid propagation of Smilax glabra in vitro].
    Zeng S, Wu K, Chen G, Duan J.
    Zhong Yao Cai; 2005 Jan 30; 28(1):1-2. PubMed ID: 15934234
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.