These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


343 related items for PubMed ID: 26256364

  • 1. In situ synthesis of bacterial cellulose/polycaprolactone blends for hot pressing nanocomposite films production.
    Figueiredo AR, Silvestre AJ, Pascoal Neto C, Freire CS.
    Carbohydr Polym; 2015 Nov 05; 132():400-8. PubMed ID: 26256364
    [Abstract] [Full Text] [Related]

  • 2. Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites.
    Li K, Huang J, Gao H, Zhong Y, Cao X, Chen Y, Zhang L, Cai J.
    Biomacromolecules; 2016 Apr 11; 17(4):1506-15. PubMed ID: 26955741
    [Abstract] [Full Text] [Related]

  • 3. Extraordinary reinforcement effect of three-dimensionally nanoporous cellulose gels in poly(ε-caprolactone) bionanocomposites.
    Li K, Song J, Xu M, Kuga S, Zhang L, Cai J.
    ACS Appl Mater Interfaces; 2014 May 28; 6(10):7204-13. PubMed ID: 24779576
    [Abstract] [Full Text] [Related]

  • 4. In vitro study of hydroxyapatite/polycaprolactone (HA/PCL) nanocomposite synthesized by an in situ sol-gel process.
    Rezaei A, Mohammadi MR.
    Mater Sci Eng C Mater Biol Appl; 2013 Jan 01; 33(1):390-6. PubMed ID: 25428086
    [Abstract] [Full Text] [Related]

  • 5. Antimicrobial bacterial cellulose nanocomposites prepared by in situ polymerization of 2-aminoethyl methacrylate.
    Figueiredo AR, Figueiredo AG, Silva NH, Barros-Timmons A, Almeida A, Silvestre AJ, Freire CS.
    Carbohydr Polym; 2015 Jun 05; 123():443-53. PubMed ID: 25843878
    [Abstract] [Full Text] [Related]

  • 6. Evaluation of bacterial cellulose/hyaluronan nanocomposite biomaterials.
    Li Y, Qing S, Zhou J, Yang G.
    Carbohydr Polym; 2014 Mar 15; 103():496-501. PubMed ID: 24528759
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Synthesis and characterization of iron oxide/cellulose nanocomposite film.
    Yadav M, Mun S, Hyun J, Kim J.
    Int J Biol Macromol; 2015 Mar 15; 74():142-9. PubMed ID: 25530000
    [Abstract] [Full Text] [Related]

  • 9. Nanocelluloses from jute fibers and their nanocomposites with natural rubber: Preparation and characterization.
    Thomas MG, Abraham E, Jyotishkumar P, Maria HJ, Pothen LA, Thomas S.
    Int J Biol Macromol; 2015 Nov 15; 81():768-77. PubMed ID: 26318667
    [Abstract] [Full Text] [Related]

  • 10. Bionanocomposites of regenerated cellulose/zeolite prepared using environmentally benign ionic liquid solvent.
    Soheilmoghaddam M, Wahit MU, Tuck Whye W, Ibrahim Akos N, Heidar Pour R, Ali Yussuf A.
    Carbohydr Polym; 2014 Jun 15; 106():326-34. PubMed ID: 24721086
    [Abstract] [Full Text] [Related]

  • 11. Biomimetic composite scaffolds based on mineralization of hydroxyapatite on electrospun poly(ɛ-caprolactone)/nanocellulose fibers.
    Si J, Cui Z, Wang Q, Liu Q, Liu C.
    Carbohydr Polym; 2016 Jun 05; 143():270-8. PubMed ID: 27083369
    [Abstract] [Full Text] [Related]

  • 12. Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties.
    Salarian M, Xu WZ, Wang Z, Sham TK, Charpentier PA.
    ACS Appl Mater Interfaces; 2014 Oct 08; 6(19):16918-31. PubMed ID: 25184699
    [Abstract] [Full Text] [Related]

  • 13. pH-responsive release behavior and anti-bacterial activity of bacterial cellulose-silver nanocomposites.
    Shao W, Liu H, Liu X, Sun H, Wang S, Zhang R.
    Int J Biol Macromol; 2015 May 08; 76():209-17. PubMed ID: 25748842
    [Abstract] [Full Text] [Related]

  • 14. Biosynthesis of bacterial cellulose in the presence of different nanoparticles to create novel hybrid materials.
    Erbas Kiziltas E, Kiziltas A, Blumentritt M, Gardner DJ.
    Carbohydr Polym; 2015 Sep 20; 129():148-55. PubMed ID: 26050900
    [Abstract] [Full Text] [Related]

  • 15. Development of biodegradable metaloxide/polymer nanocomposite films based on poly-ε-caprolactone and terephthalic acid.
    Varaprasad K, Pariguana M, Raghavendra GM, Jayaramudu T, Sadiku ER.
    Mater Sci Eng C Mater Biol Appl; 2017 Jan 01; 70(Pt 1):85-93. PubMed ID: 27770963
    [Abstract] [Full Text] [Related]

  • 16. Synthesis of polycaprolactone-grafted microfibrillated cellulose for use in novel bionanocomposites--influence of the graft length on the mechanical properties.
    Lönnberg H, Larsson K, Lindström T, Hult A, Malmström E.
    ACS Appl Mater Interfaces; 2011 May 01; 3(5):1426-33. PubMed ID: 21473594
    [Abstract] [Full Text] [Related]

  • 17. Poly(ε-caprolactone)/graphene oxide biocomposites: mechanical properties and bioactivity.
    Wan C, Chen B.
    Biomed Mater; 2011 Oct 01; 6(5):055010. PubMed ID: 21921319
    [Abstract] [Full Text] [Related]

  • 18. Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films.
    Khan A, Khan RA, Salmieri S, Le Tien C, Riedl B, Bouchard J, Chauve G, Tan V, Kamal MR, Lacroix M.
    Carbohydr Polym; 2012 Nov 06; 90(4):1601-8. PubMed ID: 22944422
    [Abstract] [Full Text] [Related]

  • 19. Biocompatible bacterial cellulose-poly(2-hydroxyethyl methacrylate) nanocomposite films.
    Figueiredo AG, Figueiredo AR, Alonso-Varona A, Fernandes SC, Palomares T, Rubio-Azpeitia E, Barros-Timmons A, Silvestre AJ, Pascoal Neto C, Freire CS.
    Biomed Res Int; 2013 Nov 06; 2013():698141. PubMed ID: 24093101
    [Abstract] [Full Text] [Related]

  • 20. Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals.
    Siqueira G, Bras J, Follain N, Belbekhouche S, Marais S, Dufresne A.
    Carbohydr Polym; 2013 Jan 16; 91(2):711-7. PubMed ID: 23121968
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.