These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
216 related items for PubMed ID: 26258261
1. Effects of In-Feed Copper, Chlortetracycline, and Tylosin on the Prevalence of Transferable Copper Resistance Gene, tcrB, Among Fecal Enterococci of Weaned Piglets. Amachawadi RG, Scott HM, Vinasco J, Tokach MD, Dritz SS, Nelssen JL, Nagaraja TG. Foodborne Pathog Dis; 2015 Aug; 12(8):670-8. PubMed ID: 26258261 [Abstract] [Full Text] [Related]
2. Occurrence of tcrB, a transferable copper resistance gene, in fecal enterococci of swine. Amachawadi RG, Shelton NW, Jacob ME, Shi X, Narayanan SK, Zurek L, Dritz SS, Nelssen JL, Tokach MD, Nagaraja TG. Foodborne Pathog Dis; 2010 Sep; 7(9):1089-97. PubMed ID: 20500052 [Abstract] [Full Text] [Related]
3. Impact of added copper, alone or in combination with chlortetracycline, on growth performance and antimicrobial resistance of fecal enterococci of weaned piglets. Capps KM, Amachawadi RG, Menegat MB, Woodworth JC, Perryman K, Tokach MD, Dritz SS, DeRouchey JM, Goodband RD, Bai J, Apley MD, Lubbers BV, Nagaraja TG. J Anim Sci; 2020 Mar 01; 98(3):. PubMed ID: 31950170 [Abstract] [Full Text] [Related]
6. Effects of in-feed copper and tylosin supplementations on copper and antimicrobial resistance in faecal enterococci of feedlot cattle. Amachawadi RG, Scott HM, Aperce C, Vinasco J, Drouillard JS, Nagaraja TG. J Appl Microbiol; 2015 Jun 01; 118(6):1287-97. PubMed ID: 25739516 [Abstract] [Full Text] [Related]
7. Effects of feeding elevated concentrations of copper and zinc on the antimicrobial susceptibilities of fecal bacteria in feedlot cattle. Jacob ME, Fox JT, Nagaraja TG, Drouillard JS, Amachawadi RG, Narayanan SK. Foodborne Pathog Dis; 2010 Jun 01; 7(6):643-8. PubMed ID: 20482227 [Abstract] [Full Text] [Related]
8. Effects of chlortetracycline and copper supplementation on antimicrobial resistance of fecal Escherichia coli from weaned pigs. Agga GE, Scott HM, Amachawadi RG, Nagaraja TG, Vinasco J, Bai J, Norby B, Renter DG, Dritz SS, Nelssen JL, Tokach MD. Prev Vet Med; 2014 Jun 01; 114(3-4):231-46. PubMed ID: 24655578 [Abstract] [Full Text] [Related]
9. In vivo spread of macrolide-lincosamide-streptogramin B (MLSB) resistance--a model study in chickens. Marosevic D, Cervinkova D, Vlkova H, Videnska P, Babak V, Jaglic Z. Vet Microbiol; 2014 Jul 16; 171(3-4):388-96. PubMed ID: 24467930 [Abstract] [Full Text] [Related]
17. Co-transfer of resistance to high concentrations of copper and first-line antibiotics among Enterococcus from different origins (humans, animals, the environment and foods) and clonal lineages. Silveira E, Freitas AR, Antunes P, Barros M, Campos J, Coque TM, Peixe L, Novais C. J Antimicrob Chemother; 2014 Apr 16; 69(4):899-906. PubMed ID: 24343895 [Abstract] [Full Text] [Related]
19. Frequency of antibiotic resistance in a swine facility 2.5 years after a ban on antibiotics. Pakpour S, Jabaji S, Chénier MR. Microb Ecol; 2012 Jan 16; 63(1):41-50. PubMed ID: 21997543 [Abstract] [Full Text] [Related]
20. Erythromycin- and copper-resistant Enterococcus hirae from marine sediment and co-transfer of erm(B) and tcrB to human Enterococcus faecalis. Pasquaroli S, Di Cesare A, Vignaroli C, Conti G, Citterio B, Biavasco F. Diagn Microbiol Infect Dis; 2014 Sep 16; 80(1):26-8. PubMed ID: 25017384 [Abstract] [Full Text] [Related] Page: [Next] [New Search]