These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
254 related items for PubMed ID: 26258826
1. Critical Power in Laboratory and Field Conditions Using Single-visit Maximal Effort Trials. Triska C, Tschan H, Tazreiter G, Nimmerichter A. Int J Sports Med; 2015 Nov; 36(13):1063-8. PubMed ID: 26258826 [Abstract] [Full Text] [Related]
2. Time Trials Versus Time-to-Exhaustion Tests: Effects on Critical Power, W', and Oxygen-Uptake Kinetics. Karsten B, Baker J, Naclerio F, Klose A, Bianco A, Nimmerichter A. Int J Sports Physiol Perform; 2018 Feb 01; 13(2):183-188. PubMed ID: 28530476 [Abstract] [Full Text] [Related]
3. Comparison of Critical Power and W' Derived From 2 or 3 Maximal Tests. Simpson LP, Kordi M. Int J Sports Physiol Perform; 2017 Jul 01; 12(6):825-830. PubMed ID: 27918663 [Abstract] [Full Text] [Related]
4. Effects of pacing strategy on work done above critical power during high-intensity exercise. Chidnok W, Dimenna FJ, Bailey SJ, Wilkerson DP, Vanhatalo A, Jones AM. Med Sci Sports Exerc; 2013 Jul 01; 45(7):1377-85. PubMed ID: 23377832 [Abstract] [Full Text] [Related]
5. Modeling the expenditure and reconstitution of work capacity above critical power. Skiba PF, Chidnok W, Vanhatalo A, Jones AM. Med Sci Sports Exerc; 2012 Aug 01; 44(8):1526-32. PubMed ID: 22382171 [Abstract] [Full Text] [Related]
6. Comparison of inter-trial recovery times for the determination of critical power and W' in cycling. Karsten B, Hopker J, Jobson SA, Baker J, Petrigna L, Klose A, Beedie C. J Sports Sci; 2017 Jul 01; 35(14):1420-1425. PubMed ID: 27531664 [Abstract] [Full Text] [Related]
7. Modeling Intermittent Cycling Performance in Hypoxia Using the Critical Power Concept. Shearman S, Dwyer D, Skiba P, Townsend N. Med Sci Sports Exerc; 2016 Mar 01; 48(3):527-35. PubMed ID: 26460632 [Abstract] [Full Text] [Related]
8. Exercise Tolerance Can Be Enhanced through a Change in Work Rate within the Severe Intensity Domain: Work above Critical Power Is Not Constant. Dekerle J, de Souza KM, de Lucas RD, Guglielmo LG, Greco CC, Denadai BS. PLoS One; 2015 Mar 01; 10(9):e0138428. PubMed ID: 26407169 [Abstract] [Full Text] [Related]
9. Predicting Critical Power in Elite Cyclists: Questioning the Validity of the 3-Minute All-Out Test. Bartram JC, Thewlis D, Martin DT, Norton KI. Int J Sports Physiol Perform; 2017 Jul 01; 12(6):783-787. PubMed ID: 27834562 [Abstract] [Full Text] [Related]
11. The curvature constant parameter of the power-duration curve for varied-power exercise. Fukuba Y, Miura A, Endo M, Kan A, Yanagawa K, Whipp BJ. Med Sci Sports Exerc; 2003 Aug 01; 35(8):1413-8. PubMed ID: 12900698 [Abstract] [Full Text] [Related]
14. Effects of differing pedalling speeds on the power-duration relationship of high intensity cycle ergometry. McNaughton L, Thomas D. Int J Sports Med; 1996 May 01; 17(4):287-92. PubMed ID: 8814511 [Abstract] [Full Text] [Related]
15. Effects of priming exercise on VO2 kinetics and the power-duration relationship. Burnley M, Davison G, Baker JR. Med Sci Sports Exerc; 2011 Nov 01; 43(11):2171-9. PubMed ID: 21552161 [Abstract] [Full Text] [Related]
18. Can We Accurately Predict Critical Power and W' from a Single Ramp Incremental Exercise Test? Caen K, Bourgois JG, Stuer L, Mermans V, Boone J. Med Sci Sports Exerc; 2023 Aug 01; 55(8):1401-1408. PubMed ID: 36924332 [Abstract] [Full Text] [Related]