These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


279 related items for PubMed ID: 26266398

  • 1. In Situ Synthesis of Catalytic Active Au Nanoparticles onto Gibbsite-Polydopamine Core-Shell Nanoplates.
    Cao J, Mei S, Jia H, Ott A, Ballauff M, Lu Y.
    Langmuir; 2015 Sep 01; 31(34):9483-91. PubMed ID: 26266398
    [Abstract] [Full Text] [Related]

  • 2. Magnetically Separable Nanocatalyst with the Fe3O4 Core and Polydopamine-Sandwiched Au Nanocrystal Shell.
    Zhang J, Fang Q, Duan J, Xu H, Xu H, Xuan S.
    Langmuir; 2018 Apr 10; 34(14):4298-4306. PubMed ID: 29546989
    [Abstract] [Full Text] [Related]

  • 3. Novel CeO2 yolk-shell structures loaded with tiny Au nanoparticles for superior catalytic reduction of p-nitrophenol.
    Fan CM, Zhang LF, Wang SS, Wang DH, Lu LQ, Xu AW.
    Nanoscale; 2012 Nov 07; 4(21):6835-40. PubMed ID: 23023220
    [Abstract] [Full Text] [Related]

  • 4. Core-shell Fe3O4 polydopamine nanoparticles serve multipurpose as drug carrier, catalyst support and carbon adsorbent.
    Liu R, Guo Y, Odusote G, Qu F, Priestley RD.
    ACS Appl Mater Interfaces; 2013 Sep 25; 5(18):9167-71. PubMed ID: 24010676
    [Abstract] [Full Text] [Related]

  • 5. Fe3O4/Polypyrrole/Au nanocomposites with core/shell/shell structure: synthesis, characterization, and their electrochemical properties.
    Zhang H, Zhong X, Xu JJ, Chen HY.
    Langmuir; 2008 Dec 02; 24(23):13748-52. PubMed ID: 18991414
    [Abstract] [Full Text] [Related]

  • 6. Controllable synthesis and catalysis application of hierarchical PS/Au core-shell nanocomposites.
    Zhou J, Ren F, Wu W, Zhang S, Xiao X, Xu J, Jiang C.
    J Colloid Interface Sci; 2012 Dec 01; 387(1):47-55. PubMed ID: 22939252
    [Abstract] [Full Text] [Related]

  • 7. Fabrication of Au@Ag core-shell nanoparticles using polyelectrolyte multilayers as nanoreactors.
    Zhang X, Wang H, Su Z.
    Langmuir; 2012 Nov 06; 28(44):15705-12. PubMed ID: 23075212
    [Abstract] [Full Text] [Related]

  • 8. Bioinspired Design of an Immobilization Interface for Highly Stable, Recyclable Nanosized Catalysts.
    Kim I, Son HY, Yang MY, Nam YS.
    ACS Appl Mater Interfaces; 2015 Jul 08; 7(26):14415-22. PubMed ID: 26076196
    [Abstract] [Full Text] [Related]

  • 9. Rod-like β-FeOOH@poly(dopamine)-Au-poly(dopamine) nanocatalysts with improved recyclable activities.
    Mao Y, Jiang W, Xuan S, Fang Q, Leung KC, Ong BS, Wang S, Gong X.
    Dalton Trans; 2015 May 28; 44(20):9538-44. PubMed ID: 25919695
    [Abstract] [Full Text] [Related]

  • 10. Hydroquinone-assisted synthesis of branched au-ag nanoparticles with polydopamine coating as highly efficient photothermal agents.
    Li J, Wang W, Zhao L, Rong L, Lan S, Sun H, Zhang H, Yang B.
    ACS Appl Mater Interfaces; 2015 Jun 03; 7(21):11613-23. PubMed ID: 25969998
    [Abstract] [Full Text] [Related]

  • 11. Electrostatic repulsion-controlled formation of polydopamine-gold Janus particles.
    Xu H, Liu X, Su G, Zhang B, Wang D.
    Langmuir; 2012 Sep 11; 28(36):13060-5. PubMed ID: 22905694
    [Abstract] [Full Text] [Related]

  • 12. Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties.
    Samal AK, Polavarapu L, Rodal-Cedeira S, Liz-Marzán LM, Pérez-Juste J, Pastoriza-Santos I.
    Langmuir; 2013 Dec 03; 29(48):15076-82. PubMed ID: 24261458
    [Abstract] [Full Text] [Related]

  • 13. One-pot synthesis of robust core/shell gold nanoparticles.
    Dong H, Zhu M, Yoon JA, Gao H, Jin R, Matyjaszewski K.
    J Am Chem Soc; 2008 Oct 01; 130(39):12852-3. PubMed ID: 18763773
    [Abstract] [Full Text] [Related]

  • 14. Preparation, characterization, and catalytic activity of core/shell Fe3O4@polyaniline@au nanocomposites.
    Xuan S, Wang YX, Yu JC, Leung KC.
    Langmuir; 2009 Oct 06; 25(19):11835-43. PubMed ID: 19702253
    [Abstract] [Full Text] [Related]

  • 15. High density decoration of noble metal nanoparticles on polydopamine-functionalized molybdenum disulphide.
    Hussain MA, Yang M, Lee TJ, Kim JW, Choi BG.
    J Colloid Interface Sci; 2015 Aug 01; 451():216-20. PubMed ID: 25898116
    [Abstract] [Full Text] [Related]

  • 16. Interfacial assembly of mussel-inspired au@ag@ polydopamine core-shell nanoparticles for recyclable nanocatalysts.
    Zhou J, Duan B, Fang Z, Song J, Wang C, Messersmith PB, Duan H.
    Adv Mater; 2014 Feb 01; 26(5):701-5. PubMed ID: 24493052
    [Abstract] [Full Text] [Related]

  • 17. Fabrication of gold nanoparticle-polymer composite particles with raspberry, core-shell and amorphous morphologies at room temperature via electrostatic interactions and diffusion.
    Kanahara M, Shimomura M, Yabu H.
    Soft Matter; 2014 Jan 14; 10(2):275-80. PubMed ID: 24651763
    [Abstract] [Full Text] [Related]

  • 18. In situ redox-oxidation polymerization for magnetic core-shell nanostructure with polydopamine-encapsulated-Au hybrid shell.
    Fang Q, Zhang J, Bai L, Duan J, Xu H, Cham-Fai Leung K, Xuan S.
    J Hazard Mater; 2019 Apr 05; 367():15-25. PubMed ID: 30594714
    [Abstract] [Full Text] [Related]

  • 19. Bioinspired synthesis of polydopamine/Ag nanocomposite particles with antibacterial activities.
    Wu C, Zhang G, Xia T, Li Z, Zhao K, Deng Z, Guo D, Peng B.
    Mater Sci Eng C Mater Biol Appl; 2015 Oct 05; 55():155-65. PubMed ID: 26117750
    [Abstract] [Full Text] [Related]

  • 20. Ferric ion-assisted in situ synthesis of silver nanoplates on polydopamine-coated silk.
    Xiao J, Zhang H, Mao C, Wang Y, Wang L, Lu Z.
    J Colloid Interface Sci; 2016 Oct 01; 479():244-250. PubMed ID: 27390855
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.