These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
418 related items for PubMed ID: 26266687
21. Highly sensitive SERS detection of Hg2+ ions in aqueous media using gold nanoparticles/graphene heterojunctions. Ding X, Kong L, Wang J, Fang F, Li D, Liu J. ACS Appl Mater Interfaces; 2013 Aug 14; 5(15):7072-8. PubMed ID: 23855919 [Abstract] [Full Text] [Related]
22. Surface-enhanced Raman scattering study of the redox adsorption of p-phenylenediamine on gold or copper surfaces. de Carvalho DF, da Fonseca BG, Barbosa IL, Landi SM, de Sena LÁ, Archanjo BS, Sant'Ana AC. Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb 15; 103():108-13. PubMed ID: 23257336 [Abstract] [Full Text] [Related]
23. Tuning plasmonic and chemical enhancement for SERS detection on graphene-based Au hybrids. Liang X, Liang B, Pan Z, Lang X, Zhang Y, Wang G, Yin P, Guo L. Nanoscale; 2015 Dec 21; 7(47):20188-96. PubMed ID: 26575834 [Abstract] [Full Text] [Related]
24. Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy. Xie L, Ling X, Fang Y, Zhang J, Liu Z. J Am Chem Soc; 2009 Jul 29; 131(29):9890-1. PubMed ID: 19572745 [Abstract] [Full Text] [Related]
25. Use of graphene and gold nanorods as substrates for the detection of pesticides by surface enhanced Raman spectroscopy. Nguyen TH, Zhang Z, Mustapha A, Li H, Lin M. J Agric Food Chem; 2014 Oct 29; 62(43):10445-51. PubMed ID: 25317673 [Abstract] [Full Text] [Related]
26. A general and efficient method for decorating graphene sheets with metal nanoparticles based on the non-covalently functionalized graphene sheets with hyperbranched polymers. Li H, Han L, Cooper-White JJ, Kim I. Nanoscale; 2012 Feb 21; 4(4):1355-61. PubMed ID: 22278595 [Abstract] [Full Text] [Related]
27. Poly-L-lysine-modified reduced graphene oxide stabilizes the copper nanoparticles with higher water-solubility and long-term additively antibacterial activity. Ouyang Y, Cai X, Shi Q, Liu L, Wan D, Tan S, Ouyang Y. Colloids Surf B Biointerfaces; 2013 Jul 01; 107():107-14. PubMed ID: 23475058 [Abstract] [Full Text] [Related]
28. Enhanced light-matter interactions in graphene-covered gold nanovoid arrays. Zhu X, Shi L, Schmidt MS, Boisen A, Hansen O, Zi J, Xiao S, Mortensen NA. Nano Lett; 2013 Oct 09; 13(10):4690-6. PubMed ID: 24010940 [Abstract] [Full Text] [Related]
29. Fabrication of graphene oxide/Ag hybrids and their surface-enhanced Raman scattering characteristics. Qian Z, Cheng Y, Zhou X, Wu J, Xu G. J Colloid Interface Sci; 2013 May 01; 397():103-7. PubMed ID: 23425548 [Abstract] [Full Text] [Related]
30. A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids. Ren W, Fang Y, Wang E. ACS Nano; 2011 Aug 23; 5(8):6425-33. PubMed ID: 21721545 [Abstract] [Full Text] [Related]
31. A facile and green method for synthesis of reduced graphene oxide/Ag hybrids as efficient surface enhanced Raman scattering platforms. Huang Q, Wang J, Wei W, Yan Q, Wu C, Zhu X. J Hazard Mater; 2015 Aug 23; 283():123-30. PubMed ID: 25262484 [Abstract] [Full Text] [Related]
32. Facile synthesis of gold nanohexagons on graphene templates in Raman spectroscopy for biosensing cancer and cancer stem cells. Manikandan M, Nasser Abdelhamid H, Talib A, Wu HF. Biosens Bioelectron; 2014 May 15; 55():180-6. PubMed ID: 24374301 [Abstract] [Full Text] [Related]
33. Sandwich-like CuNPs@AgNPs@PSB SERS substrates for sensitive detection of R6G and Forchlorfenuron. Han S, Chen C, Chen C, Wang J, Zhao X, Wang X, Lv X, Jia Z, Hou J. Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jun 05; 314():124178. PubMed ID: 38565050 [Abstract] [Full Text] [Related]
35. Methane as an effective hydrogen source for single-layer graphene synthesis on Cu foil by plasma enhanced chemical vapor deposition. Kim YS, Lee JH, Kim YD, Jerng SK, Joo K, Kim E, Jung J, Yoon E, Park YD, Seo S, Chun SH. Nanoscale; 2013 Feb 07; 5(3):1221-6. PubMed ID: 23299508 [Abstract] [Full Text] [Related]
36. Surface-enhanced Raman scattering-active gold nanoparticles modified with a monolayer of silver film. Chang CC, Yang KH, Liu YC, Yu CC, Wu YH. Analyst; 2012 Nov 07; 137(21):4943-50. PubMed ID: 22970430 [Abstract] [Full Text] [Related]
37. Lighting up the Raman signal of molecules in the vicinity of graphene related materials. Ling X, Huang S, Deng S, Mao N, Kong J, Dresselhaus MS, Zhang J. Acc Chem Res; 2015 Jul 21; 48(7):1862-70. PubMed ID: 26056861 [Abstract] [Full Text] [Related]
38. Self-assembly of lambda-DNA networks/Ag nanoparticles: hybrid architecture and active-SERS substrate. Peng C, Song Y, Wei G, Zhang W, Li Z, Dong WF. J Colloid Interface Sci; 2008 Jan 01; 317(1):183-90. PubMed ID: 17931640 [Abstract] [Full Text] [Related]
39. Identification of metalloporphyrins with high sensitivity using graphene-enhanced resonance Raman scattering. Kim BH, Kim D, Song S, Park D, Kang IS, Jeong DH, Jeon S. Langmuir; 2014 Mar 18; 30(10):2960-7. PubMed ID: 24559429 [Abstract] [Full Text] [Related]
40. Hybrid surface-enhanced Raman scattering substrate from gold nanoparticle and photonic crystal: maneuverability and uniformity of Raman spectra. Wu CY, Huang CC, Jhang JS, Liu AC, Chiang CC, Hsieh ML, Huang PJ, Tuyen le D, Minh le Q, Yang TS, Chau LK, Kan HC, Hsu CC. Opt Express; 2009 Nov 23; 17(24):21522-9. PubMed ID: 19997393 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]