These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


864 related items for PubMed ID: 26267494

  • 1. Potential for thermal tolerance to mediate climate change effects on three members of a cool temperate lizard genus, Niveoscincus.
    Caldwell AJ, While GM, Beeton NJ, Wapstra E.
    J Therm Biol; 2015 Aug; 52():14-23. PubMed ID: 26267494
    [Abstract] [Full Text] [Related]

  • 2. Energy expenditure of the spotted snow skink, Niveoscincus ocellatus, at two climatic extremes of its distribution range.
    Yuni LP, Jones SM, Wapstra E.
    J Therm Biol; 2015 Aug; 52():208-16. PubMed ID: 26267516
    [Abstract] [Full Text] [Related]

  • 3. Vulnerability to climate warming of Liolaemus pictus (Squamata, Liolaemidae), a lizard from the cold temperate climate in Patagonia, Argentina.
    Kubisch EL, Fernández JB, Ibargüengoytía NR.
    J Comp Physiol B; 2016 Feb; 186(2):243-53. PubMed ID: 26679700
    [Abstract] [Full Text] [Related]

  • 4. Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae).
    Baudier KM, Mudd AE, Erickson SC, O'Donnell S.
    J Anim Ecol; 2015 Sep; 84(5):1322-30. PubMed ID: 26072696
    [Abstract] [Full Text] [Related]

  • 5. Interactions between thermoregulatory behavior and physiological acclimatization in a wild lizard population.
    Domínguez-Guerrero SF, Muñoz MM, Pasten-Téllez DJ, Arenas-Moreno DM, Rodríguez-Miranda LA, Manríquez-Morán NL, Méndez-de la Cruz FR.
    J Therm Biol; 2019 Jan; 79():135-143. PubMed ID: 30612673
    [Abstract] [Full Text] [Related]

  • 6. Altitudinal variation in egg retention and rates of embryonic development in oviparous Zootoca vivipara fits predictions from the cold-climate model on the evolution of viviparity.
    Rodríguez-Díaz T, Braña F.
    J Evol Biol; 2012 Sep; 25(9):1877-87. PubMed ID: 22862292
    [Abstract] [Full Text] [Related]

  • 7. Hotter nests produce hatchling lizards with lower thermal tolerance.
    Dayananda B, Murray BR, Webb JK.
    J Exp Biol; 2017 Jun 15; 220(Pt 12):2159-2165. PubMed ID: 28615488
    [Abstract] [Full Text] [Related]

  • 8. Thermal physiological traits in tropical lowland amphibians: Vulnerability to climate warming and cooling.
    von May R, Catenazzi A, Santa-Cruz R, Gutierrez AS, Moritz C, Rabosky DL.
    PLoS One; 2019 Jun 15; 14(8):e0219759. PubMed ID: 31369565
    [Abstract] [Full Text] [Related]

  • 9. Thermal sensitivity of cold climate lizards and the importance of distributional ranges.
    Bonino MF, Moreno Azócar DL, Schulte JA, Abdala CS, Cruz FB.
    Zoology (Jena); 2015 Aug 15; 118(4):281-90. PubMed ID: 26066005
    [Abstract] [Full Text] [Related]

  • 10. Thermal biology of two tropical lizards from the Ecuadorian Andes and their vulnerability to climate change.
    Guerra-Correa ES, Merino-Viteri A, Andrango MB, Torres-Carvajal O.
    PLoS One; 2020 Aug 15; 15(1):e0228043. PubMed ID: 31978205
    [Abstract] [Full Text] [Related]

  • 11. The effect of acclimation temperature on thermal activity thresholds in polar terrestrial invertebrates.
    Everatt MJ, Bale JS, Convey P, Worland MR, Hayward SA.
    J Insect Physiol; 2013 Oct 15; 59(10):1057-64. PubMed ID: 23973412
    [Abstract] [Full Text] [Related]

  • 12. Has contemporary climate change played a role in population declines of the lizard Ctenophorus decresii from semi-arid Australia?
    Walker S, Stuart-Fox D, Kearney MR.
    J Therm Biol; 2015 Dec 15; 54():66-77. PubMed ID: 26615728
    [Abstract] [Full Text] [Related]

  • 13. Climate and sex ratio variation in a viviparous lizard.
    Cunningham GD, While GM, Wapstra E.
    Biol Lett; 2017 May 15; 13(5):. PubMed ID: 28566543
    [Abstract] [Full Text] [Related]

  • 14. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species.
    Overgaard J, Kearney MR, Hoffmann AA.
    Glob Chang Biol; 2014 Jun 15; 20(6):1738-50. PubMed ID: 24549716
    [Abstract] [Full Text] [Related]

  • 15. Multi-scale approach to understanding climate effects on offspring size at birth and date of birth in a reptile.
    Cadby CD, While GM, Hobday AJ, Uller T, Wapstra E.
    Integr Zool; 2010 Jun 15; 5(2):164-175. PubMed ID: 21392334
    [Abstract] [Full Text] [Related]

  • 16. Tropical amphibians in shifting thermal landscapes under land-use and climate change.
    Nowakowski AJ, Watling JI, Whitfield SM, Todd BD, Kurz DJ, Donnelly MA.
    Conserv Biol; 2017 Feb 15; 31(1):96-105. PubMed ID: 27254115
    [Abstract] [Full Text] [Related]

  • 17. Diminishing returns limit energetic costs of climate change.
    Levy O, Borchert JD, Rusch TW, Buckley LB, Angilletta MJ.
    Ecology; 2017 May 15; 98(5):1217-1228. PubMed ID: 28328067
    [Abstract] [Full Text] [Related]

  • 18. Thermal tolerance varies with age and sex for the nonnative Italian Wall Lizard (Podarcis siculus) in Southern California.
    Liwanag HEM, Haro D, Callejas B, Labib G, Pauly GB.
    J Therm Biol; 2018 Dec 15; 78():263-269. PubMed ID: 30509645
    [Abstract] [Full Text] [Related]

  • 19. Body temperature and resistance to evaporative water loss in tropical Australian frogs.
    Tracy CR, Christian KA, Betts G, Tracy CR.
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Jun 15; 150(2):102-8. PubMed ID: 16829148
    [Abstract] [Full Text] [Related]

  • 20. Upper thermal tolerance plasticity in tropical amphibian species from contrasting habitats: implications for warming impact prediction.
    Simon MN, Ribeiro PL, Navas CA.
    J Therm Biol; 2015 Feb 15; 48():36-44. PubMed ID: 25660628
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 44.