These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


133 related items for PubMed ID: 2626941

  • 1. Integration of the optical sectioning microscope and heterodyne interferometer for vibration measurements.
    Khanna SM, Koester CJ, van Netten SM.
    Acta Otolaryngol Suppl; 1989; 467():43-9. PubMed ID: 2626941
    [No Abstract] [Full Text] [Related]

  • 2. Optical sectioning characteristics of the heterodyne interferometer.
    Khanna SM, Koester CJ.
    Acta Otolaryngol Suppl; 1989; 467():61-7. PubMed ID: 2626943
    [No Abstract] [Full Text] [Related]

  • 3. Measurement of optical reflectivity in cells of the inner ear.
    Khanna SM, Willemin JF, Ulfendahl M.
    Acta Otolaryngol Suppl; 1989; 467():69-75. PubMed ID: 2626944
    [No Abstract] [Full Text] [Related]

  • 4. Heterodyne interferometer for cellular vibration measurement.
    Willemin JF, Khanna SM, Dändliker R.
    Acta Otolaryngol Suppl; 1989; 467():35-42. PubMed ID: 2626940
    [No Abstract] [Full Text] [Related]

  • 5. Mechanical design of the measurement and micropositioning systems.
    Khanna SM, Rosskothen H, Koester CJ.
    Acta Otolaryngol Suppl; 1989; 467():51-9. PubMed ID: 2626942
    [No Abstract] [Full Text] [Related]

  • 6. Cellular organization of the guinea pig's cochlea.
    Kelly JP.
    Acta Otolaryngol Suppl; 1989; 467():97-112. PubMed ID: 2626947
    [No Abstract] [Full Text] [Related]

  • 7. Incident light optical sectioning microscope for visualization of cellular structures in the inner ear.
    Koester CJ, Khanna SM, Rosskothen H, Tackaberry RB.
    Acta Otolaryngol Suppl; 1989; 467():27-33. PubMed ID: 2626939
    [No Abstract] [Full Text] [Related]

  • 8. Morphometry of the apical turn of the guinea pig's cochlea.
    Kelly JP.
    Acta Otolaryngol Suppl; 1989; 467():113-22. PubMed ID: 2626919
    [No Abstract] [Full Text] [Related]

  • 9. Recording depth and signal competition in heterodyne interferometry.
    de La Rochefoucauld O, Khanna SM, Olson ES.
    J Acoust Soc Am; 2005 Mar; 117(3 Pt 1):1267-84. PubMed ID: 15807016
    [Abstract] [Full Text] [Related]

  • 10. Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells.
    Bon P, Maucort G, Wattellier B, Monneret S.
    Opt Express; 2009 Jul 20; 17(15):13080-94. PubMed ID: 19654713
    [Abstract] [Full Text] [Related]

  • 11. An improved heterodyne laser interferometer for use in studies of cochlear mechanics.
    Cooper NP.
    J Neurosci Methods; 1999 Apr 01; 88(1):93-102. PubMed ID: 10379583
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. High resolution interferometer with multiple-pass optical configuration.
    Ahn J, Kim JA, Kang CS, Kim JW, Kim S.
    Opt Express; 2009 Nov 09; 17(23):21042-9. PubMed ID: 19997342
    [Abstract] [Full Text] [Related]

  • 15. Symmetric moving-optical-wedge interferometer for Fourier transform spectroscopy: a step toward miniaturization.
    Al-Saeed TA.
    Appl Opt; 2013 Jun 20; 52(18):4192-9. PubMed ID: 23842160
    [Abstract] [Full Text] [Related]

  • 16. Passive optical interferometer without spatial overlap between the local oscillator and signal generation.
    Ammend MJ, Blank DA.
    Opt Lett; 2009 Feb 15; 34(4):548-50. PubMed ID: 19373370
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.