These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


538 related items for PubMed ID: 26269496

  • 1. A wireless transmission neural interface system for unconstrained non-human primates.
    Fernandez-Leon JA, Parajuli A, Franklin R, Sorenson M, Felleman DJ, Hansen BJ, Hu M, Dragoi V.
    J Neural Eng; 2015 Oct; 12(5):056005. PubMed ID: 26269496
    [Abstract] [Full Text] [Related]

  • 2. An implantable wireless neural interface for recording cortical circuit dynamics in moving primates.
    Borton DA, Yin M, Aceros J, Nurmikko A.
    J Neural Eng; 2013 Apr; 10(2):026010. PubMed ID: 23428937
    [Abstract] [Full Text] [Related]

  • 3. HermesB: a continuous neural recording system for freely behaving primates.
    Santhanam G, Linderman MD, Gilja V, Afshar A, Ryu SI, Meng TH, Shenoy KV.
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):2037-50. PubMed ID: 18018699
    [Abstract] [Full Text] [Related]

  • 4. HermesC: low-power wireless neural recording system for freely moving primates.
    Chestek CA, Gilja V, Nuyujukian P, Kier RJ, Solzbacher F, Ryu SI, Harrison RR, Shenoy KV.
    IEEE Trans Neural Syst Rehabil Eng; 2009 Aug; 17(4):330-8. PubMed ID: 19497829
    [Abstract] [Full Text] [Related]

  • 5. An Inflatable and Wearable Wireless System for Making 32-Channel Electroencephalogram Measurements.
    Yu YH, Lu SW, Chuang CH, King JT, Chang CL, Chen SA, Chen SF, Lin CT.
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jul; 24(7):806-13. PubMed ID: 26780814
    [Abstract] [Full Text] [Related]

  • 6. An autonomous, broadband, multi-channel neural recording system for freely behaving primates.
    Linderman MD, Gilja V, Santhanam G, Afshar A, Ryu S, Meng TH, Shenoy KV.
    Conf Proc IEEE Eng Med Biol Soc; 2006 Jul; 2006():1212-5. PubMed ID: 17946450
    [Abstract] [Full Text] [Related]

  • 7. Wireless multi-channel single unit recording in freely moving and vocalizing primates.
    Roy S, Wang X.
    J Neurosci Methods; 2012 Jan 15; 203(1):28-40. PubMed ID: 21933683
    [Abstract] [Full Text] [Related]

  • 8. WIMAGINE: wireless 64-channel ECoG recording implant for long term clinical applications.
    Mestais CS, Charvet G, Sauter-Starace F, Foerster M, Ratel D, Benabid AL.
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jan 15; 23(1):10-21. PubMed ID: 25014960
    [Abstract] [Full Text] [Related]

  • 9. A wideband dual-antenna receiver for wireless recording from animals behaving in large arenas.
    Lee SB, Yin M, Manns JR, Ghovanloo M.
    IEEE Trans Biomed Eng; 2013 Jul 15; 60(7):1993-2004. PubMed ID: 23428612
    [Abstract] [Full Text] [Related]

  • 10. Cavity Resonator Wireless Power Transfer System for Freely Moving Animal Experiments.
    Mei H, Thackston KA, Bercich RA, Jefferys JG, Irazoqui PP.
    IEEE Trans Biomed Eng; 2017 Apr 15; 64(4):775-785. PubMed ID: 27295647
    [Abstract] [Full Text] [Related]

  • 11. Integrated wireless fast-scan cyclic voltammetry recording and electrical stimulation for reward-predictive learning in awake, freely moving rats.
    Li YT, Wickens JR, Huang YL, Pan WH, Chen FY, Chen JJ.
    J Neural Eng; 2013 Aug 15; 10(4):046007. PubMed ID: 23770892
    [Abstract] [Full Text] [Related]

  • 12. Wireless gigabit data telemetry for large-scale neural recording.
    Kuan YC, Lo YK, Kim Y, Chang MC, Liu W.
    IEEE J Biomed Health Inform; 2015 May 15; 19(3):949-57. PubMed ID: 25823050
    [Abstract] [Full Text] [Related]

  • 13. Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays.
    Olsson RH, Buhl DL, Sirota AM, Buzsaki G, Wise KD.
    IEEE Trans Biomed Eng; 2005 Jul 15; 52(7):1303-11. PubMed ID: 16041994
    [Abstract] [Full Text] [Related]

  • 14. Toward a fully integrated wireless wearable EEG-NIRS bimodal acquisition system.
    Safaie J, Grebe R, Abrishami Moghaddam H, Wallois F.
    J Neural Eng; 2013 Oct 15; 10(5):056001. PubMed ID: 23893764
    [Abstract] [Full Text] [Related]

  • 15. A wireless multi-channel bioimpedance measurement system for personalized healthcare and lifestyle.
    Ramos J, Ausín JL, Lorido AM, Redondo F, Duque-Carrillo JF.
    Stud Health Technol Inform; 2013 Oct 15; 189():59-64. PubMed ID: 23739358
    [Abstract] [Full Text] [Related]

  • 16. M3BA: A Mobile, Modular, Multimodal Biosignal Acquisition Architecture for Miniaturized EEG-NIRS-Based Hybrid BCI and Monitoring.
    von Luhmann A, Wabnitz H, Sander T, Muller KR.
    IEEE Trans Biomed Eng; 2017 Jun 15; 64(6):1199-1210. PubMed ID: 28113241
    [Abstract] [Full Text] [Related]

  • 17. Wireless, high-bandwidth recordings from non-human primate motor cortex using a scalable 16-Ch implantable microsystem.
    Borton DA, Song YK, Patterson WR, Bull CW, Park S, Laiwalla F, Donoghue JP, Nurmikko AV.
    Annu Int Conf IEEE Eng Med Biol Soc; 2009 Jun 15; 2009():5531-4. PubMed ID: 19964128
    [Abstract] [Full Text] [Related]

  • 18. Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates.
    Barz F, Livi A, Lanzilotto M, Maranesi M, Bonini L, Paul O, Ruther P.
    J Neural Eng; 2017 Jun 15; 14(3):036010. PubMed ID: 28102825
    [Abstract] [Full Text] [Related]

  • 19. Adaptive quantization of local field potentials for wireless implants in freely moving animals: an open-source neural recording device.
    Martinez D, Clément M, Messaoudi B, Gervasoni D, Litaudon P, Buonviso N.
    J Neural Eng; 2018 Apr 15; 15(2):025001. PubMed ID: 29219118
    [Abstract] [Full Text] [Related]

  • 20. RFID Technology for Continuous Monitoring of Physiological Signals in Small Animals.
    Volk T, Gorbey S, Bhattacharyya M, Gruenwald W, Lemmer B, Reindl LM, Stieglitz T, Jansen D.
    IEEE Trans Biomed Eng; 2015 Feb 15; 62(2):618-26. PubMed ID: 25314693
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 27.