These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1108 related items for PubMed ID: 26270661
1. Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress. Liu C, Zhang X, Zhang K, An H, Hu K, Wen J, Shen J, Ma C, Yi B, Tu J, Fu T. Int J Mol Sci; 2015 Aug 11; 16(8):18752-77. PubMed ID: 26270661 [Abstract] [Full Text] [Related]
2. Identification of four functionally important microRNA families with contrasting differential expression profiles between drought-tolerant and susceptible rice leaf at vegetative stage. Cheah BH, Nadarajah K, Divate MD, Wickneswari R. BMC Genomics; 2015 Sep 15; 16(1):692. PubMed ID: 26369665 [Abstract] [Full Text] [Related]
3. Coordinated mechanisms of leaves and roots in response to drought stress underlying full-length transcriptome profiling in Vicia sativa L. Min X, Lin X, Ndayambaza B, Wang Y, Liu W. BMC Plant Biol; 2020 Apr 15; 20(1):165. PubMed ID: 32293274 [Abstract] [Full Text] [Related]
4. Transcriptome Profile Analysis of Winter Rapeseed (Brassica napus L.) in Response to Freezing Stress, Reveal Potentially Connected Events to Freezing Stress. Pu Y, Liu L, Wu J, Zhao Y, Bai J, Ma L, Yue J, Jin J, Niu Z, Fang Y, Sun W. Int J Mol Sci; 2019 Jun 05; 20(11):. PubMed ID: 31195741 [Abstract] [Full Text] [Related]
5. Comparative RNA-seq analysis of the drought-sensitive lentil (Lens culinaris) root and leaf under short- and long-term water deficits. Morgil H, Tardu M, Cevahir G, Kavakli İH. Funct Integr Genomics; 2019 Sep 05; 19(5):715-727. PubMed ID: 31001704 [Abstract] [Full Text] [Related]
6. Flagellin Induced GABA-shunt improves Drought stress tolerance in Brassica napus L. Palabıyık Ş, Çetinkaya İ, Öztürk TA, Bor M. BMC Plant Biol; 2024 Sep 16; 24(1):864. PubMed ID: 39278927 [Abstract] [Full Text] [Related]
7. Genome-wide analysis of long non-coding RNAs (lncRNAs) in two contrasting rapeseed (Brassica napus L.) genotypes subjected to drought stress and re-watering. Tan X, Li S, Hu L, Zhang C. BMC Plant Biol; 2020 Feb 19; 20(1):81. PubMed ID: 32075594 [Abstract] [Full Text] [Related]
8. Genome-wide transcriptional analysis of two soybean genotypes under dehydration and rehydration conditions. Chen LM, Zhou XA, Li WB, Chang W, Zhou R, Wang C, Sha AH, Shan ZH, Zhang CJ, Qiu DZ, Yang ZL, Chen SL. BMC Genomics; 2013 Oct 06; 14():687. PubMed ID: 24093224 [Abstract] [Full Text] [Related]
9. Transcriptomic basis for drought-resistance in Brassica napus L. Wang P, Yang C, Chen H, Song C, Zhang X, Wang D. Sci Rep; 2017 Jan 16; 7():40532. PubMed ID: 28091614 [Abstract] [Full Text] [Related]
10. De novo Transcriptome Assembly of Common Wild Rice (Oryza rufipogon Griff.) and Discovery of Drought-Response Genes in Root Tissue Based on Transcriptomic Data. Tian XJ, Long Y, Wang J, Zhang JW, Wang YY, Li WM, Peng YF, Yuan QH, Pei XW. PLoS One; 2015 Jan 16; 10(7):e0131455. PubMed ID: 26134138 [Abstract] [Full Text] [Related]
11. Effects of drought stress on global gene expression profile in leaf and root samples of Dongxiang wild rice (Oryza rufipogon). Zhang F, Zhou Y, Zhang M, Luo X, Xie J. Biosci Rep; 2017 Jun 30; 37(3):. PubMed ID: 28424372 [Abstract] [Full Text] [Related]
12. Transcriptome analysis revealed the drought-responsive genes in Tibetan hulless barley. Zeng X, Bai L, Wei Z, Yuan H, Wang Y, Xu Q, Tang Y, Nyima T. BMC Genomics; 2016 May 20; 17():386. PubMed ID: 27207260 [Abstract] [Full Text] [Related]
13. Elevated carbon dioxide and drought modulate physiology and storage-root development in sweet potato by regulating microRNAs. Saminathan T, Alvarado A, Lopez C, Shinde S, Gajanayake B, Abburi VL, Vajja VG, Jagadeeswaran G, Raja Reddy K, Nimmakayala P, Reddy UK. Funct Integr Genomics; 2019 Jan 20; 19(1):171-190. PubMed ID: 30244303 [Abstract] [Full Text] [Related]
14. Key Maize Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Inbred Lines. Zenda T, Liu S, Wang X, Liu G, Jin H, Dong A, Yang Y, Duan H. Int J Mol Sci; 2019 Mar 13; 20(6):. PubMed ID: 30871211 [Abstract] [Full Text] [Related]
15. Comparative Analysis of the Chrysanthemum Leaf Transcript Profiling in Response to Salt Stress. Wu YH, Wang T, Wang K, Liang QY, Bai ZY, Liu QL, Pan YZ, Jiang BB, Zhang L. PLoS One; 2016 Mar 13; 11(7):e0159721. PubMed ID: 27447718 [Abstract] [Full Text] [Related]
16. Combining Physio-Biochemical Characterization and Transcriptome Analysis Reveal the Responses to Varying Degrees of Drought Stress in Brassica napus L. Fang S, Zhao P, Tan Z, Peng Y, Xu L, Jin Y, Wei F, Guo L, Yao X. Int J Mol Sci; 2022 Aug 02; 23(15):. PubMed ID: 35955689 [Abstract] [Full Text] [Related]
17. Screening of Candidate Leaf Morphology Genes by Integration of QTL Mapping and RNA Sequencing Technologies in Oilseed Rape (Brassica napus L.). Jian H, Yang B, Zhang A, Zhang L, Xu X, Li J, Liu L. PLoS One; 2017 Aug 02; 12(1):e0169641. PubMed ID: 28068426 [Abstract] [Full Text] [Related]
18. Comparative transcriptomic and physiological analyses of contrasting hybrid cultivars ND476 and ZX978 identify important differentially expressed genes and pathways regulating drought stress tolerance in maize. Liu G, Zenda T, Liu S, Wang X, Jin H, Dong A, Yang Y, Duan H. Genes Genomics; 2020 Aug 02; 42(8):937-955. PubMed ID: 32623576 [Abstract] [Full Text] [Related]
19. Genome-wide transcriptional and physiological responses to drought stress in leaves and roots of two willow genotypes. Pucholt P, Sjödin P, Weih M, Rönnberg-Wästljung AC, Berlin S. BMC Plant Biol; 2015 Oct 12; 15():244. PubMed ID: 26458893 [Abstract] [Full Text] [Related]
20. Morphological, transcriptomics and biochemical characterization of new dwarf mutant of Brassica napus. Wei C, Zhu L, Wen J, Yi B, Ma C, Tu J, Shen J, Fu T. Plant Sci; 2018 May 12; 270():97-113. PubMed ID: 29576090 [Abstract] [Full Text] [Related] Page: [Next] [New Search]