These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


787 related items for PubMed ID: 26275831

  • 1. Insights into the roles of carrier microstructure in adhesive/carrier-based dry powder inhalation mixtures: Carrier porosity and fine particle content.
    Shalash AO, Molokhia AM, Elsayed MM.
    Eur J Pharm Biopharm; 2015 Oct; 96():291-303. PubMed ID: 26275831
    [Abstract] [Full Text] [Related]

  • 2. The Relationship Between the Permeability and the Performance of Carrier-Based Dry Powder Inhalation Mixtures: New Insights and Practical Guidance.
    Shalash AO, Khalafallah NM, Molokhia AM, Elsayed MMA.
    AAPS PharmSciTech; 2018 Feb; 19(2):912-922. PubMed ID: 29063377
    [Abstract] [Full Text] [Related]

  • 3. A New Role of Fine Excipient Materials in Carrier-Based Dry Powder Inhalation Mixtures: Effect on Deagglomeration of Drug Particles During Mixing Revealed.
    Shalash AO, Elsayed MMA.
    AAPS PharmSciTech; 2017 Nov; 18(8):2862-2870. PubMed ID: 28421352
    [Abstract] [Full Text] [Related]

  • 4. Agglomerate behaviour of fluticasone propionate within dry powder inhaler formulations.
    Le VN, Robins E, Flament MP.
    Eur J Pharm Biopharm; 2012 Apr; 80(3):596-603. PubMed ID: 22198291
    [Abstract] [Full Text] [Related]

  • 5. Air permeability of powder: a potential tool for Dry Powder Inhaler formulation development.
    Le VN, Robins E, Flament MP.
    Eur J Pharm Biopharm; 2010 Nov; 76(3):464-9. PubMed ID: 20854906
    [Abstract] [Full Text] [Related]

  • 6. Critical attributes of fine excipient materials in carrier-based dry powder inhalation formulations: The particle shape and surface properties.
    Elsayed MMA, Alfagih IM, Brockbank K, Aodah AH, Ali R, Almansour K, Shalash AO.
    Int J Pharm; 2024 Apr 25; 655():123966. PubMed ID: 38452834
    [Abstract] [Full Text] [Related]

  • 7. Preparation and Evaluation of Surface Modified Lactose Particles for Improved Performance of Fluticasone Propionate Dry Powder Inhaler.
    Singh DJ, Jain RR, Soni PS, Abdul S, Darshana H, Gaikwad RV, Menon MD.
    J Aerosol Med Pulm Drug Deliv; 2015 Aug 25; 28(4):254-67. PubMed ID: 25517187
    [Abstract] [Full Text] [Related]

  • 8. Synergistic effect of magnesium stearate and fine lactose in improving aerosolization performance of fluticasone propionate in dry powder formulation.
    He X, Li J, Wen X, Ma S, An Y, Zhang X, Guan J, Mao S.
    Int J Pharm; 2024 Oct 25; 664():124609. PubMed ID: 39163928
    [Abstract] [Full Text] [Related]

  • 9. Influence of the lactose grade within dry powder formulations of fluticasone propionate and terbutaline sulphate.
    Le VN, Bierend H, Robins E, Steckel H, Flament MP.
    Int J Pharm; 2012 Jan 17; 422(1-2):75-82. PubMed ID: 22036653
    [Abstract] [Full Text] [Related]

  • 10. Dry powder inhaler performance of spray dried mannitol with tailored surface morphologies as carrier and salbutamol sulphate.
    Mönckedieck M, Kamplade J, Fakner P, Urbanetz NA, Walzel P, Steckel H, Scherließ R.
    Int J Pharm; 2017 May 30; 524(1-2):351-363. PubMed ID: 28347847
    [Abstract] [Full Text] [Related]

  • 11. In vitro evaluation of powders for inhalation: the effect of drug concentration on particle detachment.
    Le VN, Hoang Thi TH, Robins E, Flament MP.
    Int J Pharm; 2012 Mar 15; 424(1-2):44-9. PubMed ID: 22207163
    [Abstract] [Full Text] [Related]

  • 12. Effect of carrier particle shape on dry powder inhaler performance.
    Kaialy W, Alhalaweh A, Velaga SP, Nokhodchi A.
    Int J Pharm; 2011 Dec 12; 421(1):12-23. PubMed ID: 21945739
    [Abstract] [Full Text] [Related]

  • 13. Capabilities and limitations of using powder rheology and permeability to predict dry powder inhaler performance.
    Cordts E, Steckel H.
    Eur J Pharm Biopharm; 2012 Oct 12; 82(2):417-23. PubMed ID: 22902789
    [Abstract] [Full Text] [Related]

  • 14. Carrier-based dry powder inhalation: Impact of carrier modification on capsule filling processability and in vitro aerodynamic performance.
    Faulhammer E, Wahl V, Zellnitz S, Khinast JG, Paudel A.
    Int J Pharm; 2015 Aug 01; 491(1-2):231-42. PubMed ID: 26136200
    [Abstract] [Full Text] [Related]

  • 15. Influence of carrier on the performance of dry powder inhalers.
    Saint-Lorant G, Leterme P, Gayot A, Flament MP.
    Int J Pharm; 2007 Apr 04; 334(1-2):85-91. PubMed ID: 17113733
    [Abstract] [Full Text] [Related]

  • 16. Adhesion and redistribution of salmeterol xinafoate particles in sugar-based mixtures for inhalation.
    Adi H, Larson I, Stewart PJ.
    Int J Pharm; 2007 Jun 07; 337(1-2):229-38. PubMed ID: 17303354
    [Abstract] [Full Text] [Related]

  • 17. Elucidating the Effect of Fine Lactose Ratio on the Rheological Properties and Aerodynamic Behavior of Dry Powder for Inhalation.
    Sun Y, Qin L, Li J, Su J, Song R, Zhang X, Guan J, Mao S.
    AAPS J; 2021 Apr 15; 23(3):55. PubMed ID: 33856568
    [Abstract] [Full Text] [Related]

  • 18. Powder flow analysis: A simple method to indicate the ideal amount of lactose fines in dry powder inhaler formulations.
    Hertel M, Schwarz E, Kobler M, Hauptstein S, Steckel H, Scherließ R.
    Int J Pharm; 2018 Jan 15; 535(1-2):59-67. PubMed ID: 29100914
    [Abstract] [Full Text] [Related]

  • 19. Investigations on the Mechanism of Magnesium Stearate to Modify Aerosol Performance in Dry Powder Inhaled Formulations.
    Jetzer MW, Schneider M, Morrical BD, Imanidis G.
    J Pharm Sci; 2018 Apr 15; 107(4):984-998. PubMed ID: 29247741
    [Abstract] [Full Text] [Related]

  • 20. Air classifier technology (ACT) in dry powder inhalation Part 4. Performance of air classifier technology in the Novolizer multi-dose dry powder inhaler.
    de Boer AH, Hagedoorn P, Gjaltema D, Goede J, Frijlink HW.
    Int J Pharm; 2006 Mar 09; 310(1-2):81-9. PubMed ID: 16442246
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 40.