These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


171 related items for PubMed ID: 26277949

  • 1. Plasmon Resonance Hybridization of Gold Nanospheres and Palladium Nanoshells Combined in a Rattle Structure.
    Mahmoud MA.
    J Phys Chem Lett; 2014 Aug 07; 5(15):2594-600. PubMed ID: 26277949
    [Abstract] [Full Text] [Related]

  • 2. Synthesis and NIR optical properties of hollow gold nanospheres with LSPR greater than one micrometer.
    Xie HN, Larmour IA, Chen YC, Wark AW, Tileli V, McComb DW, Faulds K, Graham D.
    Nanoscale; 2013 Jan 21; 5(2):765-71. PubMed ID: 23233034
    [Abstract] [Full Text] [Related]

  • 3. Refractive index susceptibility of the plasmonic palladium nanoparticle: potential as the third plasmonic sensing material.
    Sugawa K, Tahara H, Yamashita A, Otsuki J, Sagara T, Harumoto T, Yanagida S.
    ACS Nano; 2015 Feb 24; 9(2):1895-904. PubMed ID: 25629586
    [Abstract] [Full Text] [Related]

  • 4. Surface-enhanced Raman spectroscopy of double-shell hollow nanoparticles: electromagnetic and chemical enhancements.
    Mahmoud MA.
    Langmuir; 2013 May 28; 29(21):6253-61. PubMed ID: 23647422
    [Abstract] [Full Text] [Related]

  • 5. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine.
    Jain PK, Lee KS, El-Sayed IH, El-Sayed MA.
    J Phys Chem B; 2006 Apr 13; 110(14):7238-48. PubMed ID: 16599493
    [Abstract] [Full Text] [Related]

  • 6. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK, Huang X, El-Sayed IH, El-Sayed MA.
    Acc Chem Res; 2008 Dec 13; 41(12):1578-86. PubMed ID: 18447366
    [Abstract] [Full Text] [Related]

  • 7. Multifunctional compact hybrid Au nanoshells: a new generation of nanoplasmonic probes for biosensing, imaging, and controlled release.
    Jin Y.
    Acc Chem Res; 2014 Jan 21; 47(1):138-48. PubMed ID: 23992824
    [Abstract] [Full Text] [Related]

  • 8. Enhanced refractive index sensitivity of localized surface plasmon resonance inflection points in single hollow gold nanospheres with inner cavity.
    Hong YA, Ha JW.
    Sci Rep; 2022 Apr 28; 12(1):6983. PubMed ID: 35484278
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Gold nanoframes: very high surface plasmon fields and excellent near-infrared sensors.
    Mahmoud MA, El-Sayed MA.
    J Am Chem Soc; 2010 Sep 15; 132(36):12704-10. PubMed ID: 20722373
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Elucidating Surface Plasmon Damping and Fano Resonance Induced by Epitaxial Growth of Palladium on Single Gold Nanorods.
    Firmanti MI, Ha JW.
    J Phys Chem Lett; 2023 Sep 14; 14(36):8016-8023. PubMed ID: 37651173
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Surface plasmon resonance of silver and gold nanoparticles in the proximity of graphene studied using the discrete dipole approximation method.
    Amendola V.
    Phys Chem Chem Phys; 2016 Jan 21; 18(3):2230-41. PubMed ID: 26694826
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.