These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
182 related items for PubMed ID: 2627888
1. Consequences of somite manipulation on the pattern of dorsal root ganglion development. Kalcheim C, Teillet MA. Development; 1989 May; 106(1):85-93. PubMed ID: 2627888 [Abstract] [Full Text] [Related]
2. Formation of the dorsal root ganglia in the avian embryo: segmental origin and migratory behavior of neural crest progenitor cells. Teillet MA, Kalcheim C, Le Douarin NM. Dev Biol; 1987 Apr; 120(2):329-47. PubMed ID: 3549390 [Abstract] [Full Text] [Related]
3. Segmentation of sensory and sympathetic ganglia: interactions between neural crest and somite cells. Kalcheim C, Goldstein RS. J Physiol (Paris); 1991 Apr; 85(3):110-6. PubMed ID: 1818106 [Abstract] [Full Text] [Related]
4. Normal segmentation and size of the primary sympathetic ganglia depend upon the alternation of rostrocaudal properties of the somites. Goldstein RS, Kalcheim C. Development; 1991 May; 112(1):327-34. PubMed ID: 1769337 [Abstract] [Full Text] [Related]
5. A positive correlation between permissiveness of mesoderm to neural crest migration and early DRG growth. Gvirtzman G, Goldstein RS, Kalcheim C. J Neurobiol; 1992 Apr; 23(3):205-16. PubMed ID: 1624931 [Abstract] [Full Text] [Related]
6. Requirement of a neural tube signal for the differentiation of neural crest cells into dorsal root ganglia. Kalcheim C, Le Douarin NM. Dev Biol; 1986 Aug; 116(2):451-66. PubMed ID: 3525281 [Abstract] [Full Text] [Related]
7. A spatial and temporal analysis of dorsal root and sympathetic ganglion formation in the avian embryo. Lallier TE, Bronner-Fraser M. Dev Biol; 1988 May; 127(1):99-112. PubMed ID: 3282939 [Abstract] [Full Text] [Related]
8. Determination of somite cells: independence of cell differentiation and morphogenesis. Aoyama H, Asamoto K. Development; 1988 Sep; 104(1):15-28. PubMed ID: 3253056 [Abstract] [Full Text] [Related]
9. Ablation of various regions within the avian vagal neural crest has differential effects on ganglion formation in the fore-, mid- and hindgut. Peters-van der Sanden MJ, Kirby ML, Gittenberger-de Groot A, Tibboel D, Mulder MP, Meijers C. Dev Dyn; 1993 Mar; 196(3):183-94. PubMed ID: 8400404 [Abstract] [Full Text] [Related]
10. Proximal tissues and patterned neurite outgrowth at the lumbosacral level of the chick embryo: partial and complete deletion of the somite. Tosney KW. Dev Biol; 1988 Jun; 127(2):266-86. PubMed ID: 3378664 [Abstract] [Full Text] [Related]
11. The microenvironment created by grafting rostral half-somites is mitogenic for neural crest cells. Goldstein RS, Teillet MA, Kalcheim C. Proc Natl Acad Sci U S A; 1990 Jun; 87(12):4476-80. PubMed ID: 2352931 [Abstract] [Full Text] [Related]
12. The differing effects of occipital and trunk somites on neural development in the chick embryo. Lim TM, Lunn ER, Keynes RJ, Stern CD. Development; 1987 Jul; 100(3):525-33. PubMed ID: 3652984 [Abstract] [Full Text] [Related]
13. Initial axial level-dependent differences in size of avian dorsal root ganglia are imposed by the sclerotome. Goldstein RS, Avivi C, Geffen R. Dev Biol; 1995 Mar; 168(1):214-22. PubMed ID: 7883075 [Abstract] [Full Text] [Related]
14. Sacral neural crest cells colonise aganglionic hindgut in vivo but fail to compensate for lack of enteric ganglia. Burns AJ, Champeval D, Le Douarin NM. Dev Biol; 2000 Mar 01; 219(1):30-43. PubMed ID: 10677253 [Abstract] [Full Text] [Related]
15. Determination of epithelial half-somites in skeletal morphogenesis. Goldstein RS, Kalcheim C. Development; 1992 Oct 01; 116(2):441-5. PubMed ID: 1286618 [Abstract] [Full Text] [Related]