These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
277 related items for PubMed ID: 26282187
21. Plasmonic properties of silver nanostructures coated with an amorphous silicon-carbon alloy and their applications for sensitive sensing of DNA hybridization. Touahir L, Galopin E, Boukherroub R, Gouget-Laemmel AC, Chazalviel JN, Ozanam F, Saison O, Akjouj A, Pennec Y, Djafari-Rouhani B, Szunerits S. Analyst; 2011 May 07; 136(9):1859-66. PubMed ID: 21437320 [Abstract] [Full Text] [Related]
22. Localized surface plasmon resonance-based DNA detection in solution using gold-decorated superparamagnetic Fe3O4 nanocomposite. Bandyopadhyay A, Sarkar K. Anal Biochem; 2014 Nov 15; 465():156-63. PubMed ID: 25089662 [Abstract] [Full Text] [Related]
23. The aspect ratio effect on plasmonic properties and biosensing of bonding mode in gold elliptical nanoring arrays. Tsai CY, Chang KH, Wu CY, Lee PT. Opt Express; 2013 Jun 17; 21(12):14090-6. PubMed ID: 23787599 [Abstract] [Full Text] [Related]
24. Biosensing by optical waveguide spectroscopy based on localized surface plasmon resonance of gold nanoparticles used as a probe or as a label. Kajiura M, Nakanishi T, Iida H, Takada H, Osaka T. J Colloid Interface Sci; 2009 Jul 01; 335(1):140-5. PubMed ID: 19395015 [Abstract] [Full Text] [Related]
25. A Mass-Producible and Versatile Sensing System: Localized Surface Plasmon Resonance Excited by Individual Waveguide Modes. Ding Z, Stubbs JM, McRae D, Blacquiere JM, Lagugné-Labarthet F, Mittler S. ACS Sens; 2018 Feb 23; 3(2):334-341. PubMed ID: 29318873 [Abstract] [Full Text] [Related]
26. Design of label-free, homogeneous biosensing platform based on plasmonic coupling and surface-enhanced Raman scattering using unmodified gold nanoparticles. Yi Z, Li XY, Liu FJ, Jin PY, Chu X, Yu RQ. Biosens Bioelectron; 2013 May 15; 43():308-14. PubMed ID: 23353007 [Abstract] [Full Text] [Related]
27. A sensitive amperometric immunosensor for alpha-fetoprotein based on carbon nanotube/DNA/Thi/nano-Au modified glassy carbon electrode. Ran XQ, Yuan R, Chai YQ, Hong CL, Qian XQ. Colloids Surf B Biointerfaces; 2010 Sep 01; 79(2):421-6. PubMed ID: 20627666 [Abstract] [Full Text] [Related]
28. Localized surface plasmon resonance with five-branched gold nanostars in a plastic optical fiber for bio-chemical sensor implementation. Cennamo N, D'Agostino G, Donà A, Dacarro G, Pallavicini P, Pesavento M, Zeni L. Sensors (Basel); 2013 Oct 29; 13(11):14676-86. PubMed ID: 24172284 [Abstract] [Full Text] [Related]
29. Ultrasensitive magnetic field-assisted surface plasmon resonance immunoassay for human cardiac troponin I. Wu Q, Sun Y, Zhang D, Li S, Zhang Y, Ma P, Yu Y, Wang X, Song D. Biosens Bioelectron; 2017 Oct 15; 96():288-293. PubMed ID: 28505563 [Abstract] [Full Text] [Related]
30. Birth of the localized surface plasmon resonance in monolayer-protected gold nanoclusters. Malola S, Lehtovaara L, Enkovaara J, Häkkinen H. ACS Nano; 2013 Nov 26; 7(11):10263-70. PubMed ID: 24107127 [Abstract] [Full Text] [Related]
31. Cholesterol aided etching of tomatine gold nanoparticles: a non-enzymatic blood cholesterol monitor. Raj V, Johnson T, Joseph K. Biosens Bioelectron; 2014 Oct 15; 60():191-4. PubMed ID: 24811192 [Abstract] [Full Text] [Related]
32. Preparation of gold nanoparticles/functionalized multiwalled carbon nanotube nanocomposites and its glucose biosensing application. Li F, Wang Z, Shan C, Song J, Han D, Niu L. Biosens Bioelectron; 2009 Feb 15; 24(6):1765-70. PubMed ID: 18951009 [Abstract] [Full Text] [Related]
33. Novel amino-acid-based polymer/multi-walled carbon nanotube bio-nanocomposites: highly water dispersible carbon nanotubes decorated with gold nanoparticles. Kumar NA, Bund A, Cho BG, Lim KT, Jeong YT. Nanotechnology; 2009 Jun 03; 20(22):225608. PubMed ID: 19436092 [Abstract] [Full Text] [Related]
35. Gold Nanoparticles Deposited Polyaniline-TiO2 Nanotube for Surface Plasmon Resonance Enhanced Photoelectrochemical Biosensing. Zhu J, Huo X, Liu X, Ju H. ACS Appl Mater Interfaces; 2016 Jan 13; 8(1):341-9. PubMed ID: 26673630 [Abstract] [Full Text] [Related]
36. Highly sensitive and simple SERS substrate based on photochemically generated carbon nanotubes-gold nanorods hybrids. Caires AJ, Vaz RP, Fantini C, Ladeira LO. J Colloid Interface Sci; 2015 Oct 01; 455():78-82. PubMed ID: 26057106 [Abstract] [Full Text] [Related]
37. Highly stable and sensitive glucose biosensor based on covalently assembled high density Au nanostructures. Si P, Kannan P, Guo L, Son H, Kim DH. Biosens Bioelectron; 2011 May 15; 26(9):3845-51. PubMed ID: 21454070 [Abstract] [Full Text] [Related]
38. Controlled Assembly of Gold Nanostructures on a Solid Substrate via Imidazole Directed Hydrogen Bonding for High Performance Surface Enhance Raman Scattering Sensing of Hypochlorous Acid. Sun J, Liu R, Tang J, Zhang Z, Zhou X, Liu J. ACS Appl Mater Interfaces; 2015 Aug 05; 7(30):16730-7. PubMed ID: 26167718 [Abstract] [Full Text] [Related]
39. Monitoring of DNA-protein interaction with single gold nanoparticles by localized scattering plasmon resonance spectroscopy. Lo KM, Lai CY, Chan HM, Ma DL, Li HW. Methods; 2013 Dec 15; 64(3):331-7. PubMed ID: 23954570 [Abstract] [Full Text] [Related]
40. Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles. Chen SJ, Chien FC, Lin GY, Lee KC. Opt Lett; 2004 Jun 15; 29(12):1390-2. PubMed ID: 15233445 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]