These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


208 related items for PubMed ID: 26282920

  • 1. A microchip integrating cell array positioning with in situ single-cell impedance measurement.
    Guo X, Zhu R, Zong X.
    Analyst; 2015 Oct 07; 140(19):6571-8. PubMed ID: 26282920
    [Abstract] [Full Text] [Related]

  • 2. Controllable in-situ cell electroporation with cell positioning and impedance monitoring using micro electrode array.
    Guo X, Zhu R.
    Sci Rep; 2016 Aug 10; 6():31392. PubMed ID: 27507603
    [Abstract] [Full Text] [Related]

  • 3. Controllably moving individual living cell in an array by modulating signal phase difference based on dielectrophoresis.
    Guo X, Zhu R.
    Biosens Bioelectron; 2015 Jun 15; 68():529-535. PubMed ID: 25638795
    [Abstract] [Full Text] [Related]

  • 4. Microtrap electrode devices for single cell trapping and impedance measurement.
    Mondal D, Roychaudhuri C, Das L, Chatterjee J.
    Biomed Microdevices; 2012 Oct 15; 14(5):955-64. PubMed ID: 22767244
    [Abstract] [Full Text] [Related]

  • 5. Adjustable trapping position for single cells using voltage phase-controlled method.
    Wang CC, Lan KC, Chen MK, Wang MH, Jang LS.
    Biosens Bioelectron; 2013 Nov 15; 49():297-304. PubMed ID: 23787359
    [Abstract] [Full Text] [Related]

  • 6. Effect of Electrode Shape on Impedance of Single HeLa Cell: A COMSOL Simulation.
    Wang MH, Chang WH.
    Biomed Res Int; 2015 Nov 15; 2015():871603. PubMed ID: 25961043
    [Abstract] [Full Text] [Related]

  • 7. Microchip with Single-Cell Impedance Measurements for Monitoring Osteogenic Differentiation of Mesenchymal Stem Cells under Electrical Stimulation.
    Zhang Z, Zheng T, Zhu R.
    Anal Chem; 2020 Sep 15; 92(18):12579-12587. PubMed ID: 32859132
    [Abstract] [Full Text] [Related]

  • 8. Battery-powered portable instrument system for single-cell trapping, impedance measurements, and modeling analyses.
    Tsai SL, Chiang Y, Wang MH, Chen MK, Jang LS.
    Electrophoresis; 2014 Aug 15; 35(16):2392-400. PubMed ID: 24610717
    [Abstract] [Full Text] [Related]

  • 9. Materials analyses and electrochemical impedance of implantable metal electrodes.
    Howlader MM, Ul Alam A, Sharma RP, Deen MJ.
    Phys Chem Chem Phys; 2015 Apr 21; 17(15):10135-45. PubMed ID: 25790136
    [Abstract] [Full Text] [Related]

  • 10. Integration of single-cell trapping and impedance measurement utilizing microwell electrodes.
    Lan KC, Jang LS.
    Biosens Bioelectron; 2011 Jan 15; 26(5):2025-31. PubMed ID: 20970315
    [Abstract] [Full Text] [Related]

  • 11. Effects of electrode geometry and cell location on single-cell impedance measurement.
    Wang JW, Wang MH, Jang LS.
    Biosens Bioelectron; 2010 Feb 15; 25(6):1271-6. PubMed ID: 19926465
    [Abstract] [Full Text] [Related]

  • 12. Single HeLa and MCF-7 cell measurement using minimized impedance spectroscopy and microfluidic device.
    Wang MH, Kao MF, Jang LS.
    Rev Sci Instrum; 2011 Jun 15; 82(6):064302. PubMed ID: 21721710
    [Abstract] [Full Text] [Related]

  • 13. Single-walled carbon nanotubes deposited on surface electrodes to improve interface impedance.
    Gabriel G, Gómez-Martínez R, Villa R.
    Physiol Meas; 2008 Jun 15; 29(6):S203-12. PubMed ID: 18544808
    [Abstract] [Full Text] [Related]

  • 14. Dielectrophoretic chip with multilayer electrodes and micro-cavity array for trapping and programmably releasing single cells.
    Chuang CH, Huang YW, Wu YT.
    Biomed Microdevices; 2012 Apr 15; 14(2):271-8. PubMed ID: 22072154
    [Abstract] [Full Text] [Related]

  • 15. 3D cell electrorotation and imaging for measuring multiple cellular biophysical properties.
    Huang L, Zhao P, Wang W.
    Lab Chip; 2018 Aug 07; 18(16):2359-2368. PubMed ID: 29946598
    [Abstract] [Full Text] [Related]

  • 16. System-level biochip for impedance sensing and programmable manipulation of bladder cancer cells.
    Chuang CH, Huang YW, Wu YT.
    Sensors (Basel); 2011 Aug 07; 11(11):11021-35. PubMed ID: 22346685
    [Abstract] [Full Text] [Related]

  • 17. Rapid microparticle patterning by enhanced dielectrophoresis effect on a double-layer electrode substrate.
    Cheng W, Li SZ, Zeng Q, Yu XL, Wang Y, Chan HL, Liu W, Guo SS, Zhao XZ.
    Electrophoresis; 2011 Nov 07; 32(23):3371-7. PubMed ID: 22058049
    [Abstract] [Full Text] [Related]

  • 18. Microcavity array (MCA)-based biosensor chip for functional drug screening of 3D tissue models.
    Kloss D, Kurz R, Jahnke HG, Fischer M, Rothermel A, Anderegg U, Simon JC, Robitzki AA.
    Biosens Bioelectron; 2008 May 15; 23(10):1473-80. PubMed ID: 18289841
    [Abstract] [Full Text] [Related]

  • 19. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis.
    Heileman K, Daoud J, Tabrizian M.
    Biosens Bioelectron; 2013 Nov 15; 49():348-59. PubMed ID: 23796534
    [Abstract] [Full Text] [Related]

  • 20. [Optimal electrode array for ambulatory measuring of cardiac output based on the electrical impedance method].
    Song Y, Gao S, Ikrashi A, Yamakoshi K.
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Feb 15; 28(1):32-5, 57. PubMed ID: 21485178
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.