These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


329 related items for PubMed ID: 26288653

  • 1. Deletion of homologs of the SREBP pathway results in hyper-production of cellulases in Neurospora crassa and Trichoderma reesei.
    Reilly MC, Qin L, Craig JP, Starr TL, Glass NL.
    Biotechnol Biofuels; 2015; 8():121. PubMed ID: 26288653
    [Abstract] [Full Text] [Related]

  • 2. Deciphering the Regulatory Network between the SREBP Pathway and Protein Secretion in Neurospora crassa.
    Qin L, Wu VW, Glass NL.
    mBio; 2017 Apr 18; 8(2):. PubMed ID: 28420736
    [Abstract] [Full Text] [Related]

  • 3. Involvement of the adaptor protein 3 complex in lignocellulase secretion in Neurospora crassa revealed by comparative genomic screening.
    Pei X, Fan F, Lin L, Chen Y, Sun W, Zhang S, Tian C.
    Biotechnol Biofuels; 2015 Apr 18; 8():124. PubMed ID: 26300971
    [Abstract] [Full Text] [Related]

  • 4. Enhancement of cellulase production in Trichoderma reesei RUT-C30 by comparative genomic screening.
    Liu P, Lin A, Zhang G, Zhang J, Chen Y, Shen T, Zhao J, Wei D, Wang W.
    Microb Cell Fact; 2019 May 10; 18(1):81. PubMed ID: 31077201
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. The transcriptional factor Clr-5 is involved in cellulose degradation through regulation of amino acid metabolism in Neurospora crassa.
    Xue F, Zhao Z, Gu S, Chen M, Xu J, Luo X, Li J, Tian C.
    BMC Biotechnol; 2023 Nov 29; 23(1):50. PubMed ID: 38031036
    [Abstract] [Full Text] [Related]

  • 7. Identification of a novel repressor encoded by the putative gene ctf1 for cellulase biosynthesis in Trichoderma reesei through artificial zinc finger engineering.
    Meng QS, Zhang F, Liu CG, Zhao XQ, Bai FW.
    Biotechnol Bioeng; 2020 Jun 29; 117(6):1747-1760. PubMed ID: 32124970
    [Abstract] [Full Text] [Related]

  • 8. A β-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production.
    Li C, Lin F, Li Y, Wei W, Wang H, Qin L, Zhou Z, Li B, Wu F, Chen Z.
    Microb Cell Fact; 2016 Sep 01; 15(1):151. PubMed ID: 27585813
    [Abstract] [Full Text] [Related]

  • 9. Mutagenesis of Trichoderma reesei endoglucanase I: impact of expression host on activity and stability at elevated temperatures.
    Chokhawala HA, Roche CM, Kim TW, Atreya ME, Vegesna N, Dana CM, Blanch HW, Clark DS.
    BMC Biotechnol; 2015 Feb 21; 15(1):11. PubMed ID: 25879765
    [Abstract] [Full Text] [Related]

  • 10. Deciphering the molecular mechanisms behind cellulase production in Trichoderma reesei, the hyper-cellulolytic filamentous fungus.
    Shida Y, Furukawa T, Ogasawara W.
    Biosci Biotechnol Biochem; 2016 Sep 21; 80(9):1712-29. PubMed ID: 27075508
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Engineering Trichoderma reesei Rut-C30 with the overexpression of egl1 at the ace1 locus to relieve repression on cellulase production and to adjust the ratio of cellulolytic enzymes for more efficient hydrolysis of lignocellulosic biomass.
    Meng QS, Liu CG, Zhao XQ, Bai FW.
    J Biotechnol; 2018 Nov 10; 285():56-63. PubMed ID: 30194052
    [Abstract] [Full Text] [Related]

  • 14. Penicillium janthinellum NCIM1366 shows improved biomass hydrolysis and a larger number of CAZymes with higher induction levels over Trichoderma reesei RUT-C30.
    Sreeja-Raju A, Christopher M, Kooloth-Valappil P, Kuni-Parambil R, Gokhale DV, Sankar M, Abraham A, Pandey A, Sukumaran RK.
    Biotechnol Biofuels; 2020 Dec 01; 13(1):196. PubMed ID: 33292411
    [Abstract] [Full Text] [Related]

  • 15. Transgressive phenotypes from outbreeding between the Trichoderma reesei hyper producer RutC30 and a natural isolate.
    Chan Ho Tong L, Jourdier E, Naquin D, Ben Chaabane F, Aouam T, Chartier G, Castro González I, Margeot A, Bidard F.
    Microbiol Spectr; 2024 Oct 03; 12(10):e0044124. PubMed ID: 39162516
    [Abstract] [Full Text] [Related]

  • 16. Cellulase hyper-production by Trichoderma reesei mutant SEU-7 on lactose.
    Li C, Lin F, Zhou L, Qin L, Li B, Zhou Z, Jin M, Chen Z.
    Biotechnol Biofuels; 2017 Oct 03; 10():228. PubMed ID: 29034003
    [Abstract] [Full Text] [Related]

  • 17. Analysis of a conserved cellulase transcriptional regulator reveals inducer-independent production of cellulolytic enzymes in Neurospora crassa.
    Coradetti ST, Xiong Y, Glass NL.
    Microbiologyopen; 2013 Aug 03; 2(4):595-609. PubMed ID: 23766336
    [Abstract] [Full Text] [Related]

  • 18. Global Reprogramming of Gene Transcription in Trichoderma reesei by Overexpressing an Artificial Transcription Factor for Improved Cellulase Production and Identification of Ypr1 as an Associated Regulator.
    Zhang F, Li JX, Champreda V, Liu CG, Bai FW, Zhao XQ.
    Front Bioeng Biotechnol; 2020 Aug 03; 8():649. PubMed ID: 32719779
    [Abstract] [Full Text] [Related]

  • 19. Identification of the CRE-1 cellulolytic regulon in Neurospora crassa.
    Sun J, Glass NL.
    PLoS One; 2011 Aug 03; 6(9):e25654. PubMed ID: 21980519
    [Abstract] [Full Text] [Related]

  • 20. Using a model filamentous fungus to unravel mechanisms of lignocellulose deconstruction.
    Znameroski EA, Glass NL.
    Biotechnol Biofuels; 2013 Jan 22; 6(1):6. PubMed ID: 23339486
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.