These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
272 related items for PubMed ID: 26289580
1. Sleep stage classification with ECG and respiratory effort. Fonseca P, Long X, Radha M, Haakma R, Aarts RM, Rolink J. Physiol Meas; 2015 Oct; 36(10):2027-40. PubMed ID: 26289580 [Abstract] [Full Text] [Related]
2. Measuring dissimilarity between respiratory effort signals based on uniform scaling for sleep staging. Long X, Yang J, Weysen T, Haakma R, Foussier J, Fonseca P, Aarts RM. Physiol Meas; 2014 Dec; 35(12):2529-42. PubMed ID: 25407770 [Abstract] [Full Text] [Related]
3. Cardiorespiratory-based sleep staging in subjects with obstructive sleep apnea. Redmond SJ, Heneghan C. IEEE Trans Biomed Eng; 2006 Mar; 53(3):485-96. PubMed ID: 16532775 [Abstract] [Full Text] [Related]
4. Respiration amplitude analysis for REM and NREM sleep classification. Long X, Foussier J, Fonseca P, Haakma R, Aarts RM. Annu Int Conf IEEE Eng Med Biol Soc; 2013 Mar; 2013():5017-20. PubMed ID: 24110862 [Abstract] [Full Text] [Related]
5. Deep learning in the cross-time frequency domain for sleep staging from a single-lead electrocardiogram. Li Q, Li Q, Liu C, Shashikumar SP, Nemati S, Clifford GD. Physiol Meas; 2018 Dec 21; 39(12):124005. PubMed ID: 30524025 [Abstract] [Full Text] [Related]
6. An evaluation of cardiorespiratory and movement features with respect to sleep-stage classification. Willemen T, Van Deun D, Verhaert V, Vandekerckhove M, Exadaktylos V, Verbraecken J, Van Huffel S, Haex B, Sloten JV. IEEE J Biomed Health Inform; 2014 Mar 21; 18(2):661-9. PubMed ID: 24058031 [Abstract] [Full Text] [Related]
7. Sleep and wake classification with actigraphy and respiratory effort using dynamic warping. Long X, Fonseca P, Foussier J, Haakma R, Aarts RM. IEEE J Biomed Health Inform; 2014 Jul 21; 18(4):1272-84. PubMed ID: 24108754 [Abstract] [Full Text] [Related]
8. Estimating actigraphy from motion artifacts in ECG and respiratory effort signals. Fonseca P, Aarts RM, Long X, Rolink J, Leonhardt S. Physiol Meas; 2016 Jan 21; 37(1):67-82. PubMed ID: 26641863 [Abstract] [Full Text] [Related]
9. Automatic identification of insomnia using optimal antisymmetric biorthogonal wavelet filter bank with ECG signals. Sharma M, Dhiman HS, Acharya UR. Comput Biol Med; 2021 Apr 21; 131():104246. PubMed ID: 33631498 [Abstract] [Full Text] [Related]
10. Sleep stage classification based on respiratory signal. Tataraidze A, Anishchenko L, Korostovtseva L, Kooij BJ, Bochkarev M, Sviryaev Y. Annu Int Conf IEEE Eng Med Biol Soc; 2015 Apr 21; 2015():358-61. PubMed ID: 26736273 [Abstract] [Full Text] [Related]
11. Detection of Nocturnal Slow Wave Sleep Based on Cardiorespiratory Activity in Healthy Adults. Long X, Fonseca P, Aarts RM, Haakma R, Rolink J, Leonhardt S. IEEE J Biomed Health Inform; 2017 Jan 21; 21(1):123-133. PubMed ID: 26452293 [Abstract] [Full Text] [Related]
12. A method of REM-NREM sleep distinction using ECG signal for unobtrusive personal monitoring. Singh J, Sharma RK, Gupta AK. Comput Biol Med; 2016 Nov 01; 78():138-143. PubMed ID: 27741420 [Abstract] [Full Text] [Related]
13. A multi-task learning model using RR intervals and respiratory effort to assess sleep disordered breathing. Xie J, Fonseca P, van Dijk J, Overeem S, Long X. Biomed Eng Online; 2024 May 05; 23(1):45. PubMed ID: 38705982 [Abstract] [Full Text] [Related]
14. Unconstrained Sleep Stage Estimation Based on Respiratory Dynamics and Body Movement. Hwang SH, Lee YJ, Jeong DU, Park KS. Methods Inf Med; 2016 Dec 07; 55(6):545-555. PubMed ID: 27626633 [Abstract] [Full Text] [Related]
15. An E-health solution for automatic sleep classification according to Rechtschaffen and Kales: validation study of the Somnolyzer 24 x 7 utilizing the Siesta database. Anderer P, Gruber G, Parapatics S, Woertz M, Miazhynskaia T, Klosch G, Saletu B, Zeitlhofer J, Barbanoj MJ, Danker-Hopfe H, Himanen SL, Kemp B, Penzel T, Grozinger M, Kunz D, Rappelsberger P, Schlogl A, Dorffner G. Neuropsychobiology; 2005 Dec 07; 51(3):115-33. PubMed ID: 15838184 [Abstract] [Full Text] [Related]
16. A comparison of probabilistic classifiers for sleep stage classification. Fonseca P, den Teuling N, Long X, Aarts RM. Physiol Meas; 2018 May 15; 39(5):055001. PubMed ID: 29620019 [Abstract] [Full Text] [Related]
17. Cardiorespiratory Sleep Stage Detection Using Conditional Random Fields. Fonseca P, den Teuling N, Long X, Aarts RM. IEEE J Biomed Health Inform; 2017 Jul 15; 21(4):956-966. PubMed ID: 27076473 [Abstract] [Full Text] [Related]
18. Automatic detection of overnight deep sleep based on heart rate variability: a preliminary study. Long X, Fonseca P, Haakma R, Foussier J, Aarts RM. Annu Int Conf IEEE Eng Med Biol Soc; 2014 Jul 15; 2014():50-3. PubMed ID: 25569894 [Abstract] [Full Text] [Related]
19. Automatic sleep stages classification using respiratory, heart rate and movement signals. Gaiduk M, Penzel T, Ortega JA, Seepold R. Physiol Meas; 2018 Dec 24; 39(12):124008. PubMed ID: 30524059 [Abstract] [Full Text] [Related]
20. Validation of Photoplethysmography-Based Sleep Staging Compared With Polysomnography in Healthy Middle-Aged Adults. Fonseca P, Weysen T, Goelema MS, Møst EIS, Radha M, Lunsingh Scheurleer C, van den Heuvel L, Aarts RM. Sleep; 2017 Jul 01; 40(7):. PubMed ID: 28838130 [Abstract] [Full Text] [Related] Page: [Next] [New Search]