These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
233 related items for PubMed ID: 26296781
1. Structure of HIV-1 reverse transcriptase bound to a novel 38-mer hairpin template-primer DNA aptamer. Miller MT, Tuske S, Das K, DeStefano JJ, Arnold E. Protein Sci; 2016 Jan; 25(1):46-55. PubMed ID: 26296781 [Abstract] [Full Text] [Related]
2. Structure and functional implications of the polymerase active site region in a complex of HIV-1 RT with a double-stranded DNA template-primer and an antibody Fab fragment at 2.8 A resolution. Ding J, Das K, Hsiou Y, Sarafianos SG, Clark AD, Jacobo-Molina A, Tantillo C, Hughes SH, Arnold E. J Mol Biol; 1998 Dec 11; 284(4):1095-111. PubMed ID: 9837729 [Abstract] [Full Text] [Related]
3. Crystal structures of an N-terminal fragment from Moloney murine leukemia virus reverse transcriptase complexed with nucleic acid: functional implications for template-primer binding to the fingers domain. Najmudin S, Coté ML, Sun D, Yohannan S, Montano SP, Gu J, Georgiadis MM. J Mol Biol; 2000 Feb 18; 296(2):613-32. PubMed ID: 10669612 [Abstract] [Full Text] [Related]
5. Binding of RNA template to a complex of HIV-1 reverse transcriptase/primer/template. Canard B, Sarfati R, Richardson CC. Proc Natl Acad Sci U S A; 1997 Oct 14; 94(21):11279-84. PubMed ID: 9326600 [Abstract] [Full Text] [Related]
6. Protein-nucleic acid interactions and DNA conformation in a complex of human immunodeficiency virus type 1 reverse transcriptase with a double-stranded DNA template-primer. Ding J, Hughes SH, Arnold E. Biopolymers; 1997 Oct 14; 44(2):125-38. PubMed ID: 9354757 [Abstract] [Full Text] [Related]
7. The p51 subunit of human immunodeficiency virus type 1 reverse transcriptase is essential in loading the p66 subunit on the template primer. Harris D, Lee R, Misra HS, Pandey PK, Pandey VN. Biochemistry; 1998 Apr 28; 37(17):5903-8. PubMed ID: 9558323 [Abstract] [Full Text] [Related]
8. Insights into DNA polymerization mechanisms from structure and function analysis of HIV-1 reverse transcriptase. Patel PH, Jacobo-Molina A, Ding J, Tantillo C, Clark AD, Raag R, Nanni RG, Hughes SH, Arnold E. Biochemistry; 1995 Apr 25; 34(16):5351-63. PubMed ID: 7537090 [Abstract] [Full Text] [Related]
9. Structure of HIV-1 reverse transcriptase/d4TTP complex: Novel DNA cross-linking site and pH-dependent conformational changes. Martinez SE, Bauman JD, Das K, Arnold E. Protein Sci; 2019 Mar 25; 28(3):587-597. PubMed ID: 30499174 [Abstract] [Full Text] [Related]
10. Active site binding and sequence requirements for inhibition of HIV-1 reverse transcriptase by the RT1 family of single-stranded DNA aptamers. Kissel JD, Held DM, Hardy RW, Burke DH. Nucleic Acids Res; 2007 Mar 25; 35(15):5039-50. PubMed ID: 17644816 [Abstract] [Full Text] [Related]
11. Novel aptamer inhibitors of human immunodeficiency virus reverse transcriptase. DeStefano JJ, Nair GR. Oligonucleotides; 2008 Jun 25; 18(2):133-44. PubMed ID: 18637731 [Abstract] [Full Text] [Related]
12. Potent inhibition of human immunodeficiency virus type 1 replication by template analog reverse transcriptase inhibitors derived by SELEX (systematic evolution of ligands by exponential enrichment). Joshi P, Prasad VR. J Virol; 2002 Jul 25; 76(13):6545-57. PubMed ID: 12050367 [Abstract] [Full Text] [Related]
14. Integrative structural biology studies of HIV-1 reverse transcriptase binding to a high-affinity DNA aptamer. Tuske S, Zheng J, Olson ED, Ruiz FX, Pascal BD, Hoang A, Bauman JD, Das K, DeStefano JJ, Musier-Forsyth K, Griffin PR, Arnold E. Curr Res Struct Biol; 2020 Jul 25; 2():116-129. PubMed ID: 33870216 [Abstract] [Full Text] [Related]
15. Insight into HIV-1 reverse transcriptase-aptamer interaction from molecular dynamics simulations. Aeksiri N, Songtawee N, Gleeson MP, Hannongbua S, Choowongkomon K. J Mol Model; 2014 Aug 25; 20(8):2380. PubMed ID: 25073457 [Abstract] [Full Text] [Related]
16. Collective motions in HIV-1 reverse transcriptase: examination of flexibility and enzyme function. Bahar I, Erman B, Jernigan RL, Atilgan AR, Covell DG. J Mol Biol; 1999 Jan 22; 285(3):1023-37. PubMed ID: 9887265 [Abstract] [Full Text] [Related]
17. Nonnucleoside inhibitor binding affects the interactions of the fingers subdomain of human immunodeficiency virus type 1 reverse transcriptase with DNA. Peletskaya EN, Kogon AA, Tuske S, Arnold E, Hughes SH. J Virol; 2004 Apr 22; 78(7):3387-97. PubMed ID: 15016861 [Abstract] [Full Text] [Related]
18. Structure of unliganded HIV-1 reverse transcriptase at 2.7 A resolution: implications of conformational changes for polymerization and inhibition mechanisms. Hsiou Y, Ding J, Das K, Clark AD, Hughes SH, Arnold E. Structure; 1996 Jul 15; 4(7):853-60. PubMed ID: 8805568 [Abstract] [Full Text] [Related]
19. Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA. Jacobo-Molina A, Ding J, Nanni RG, Clark AD, Lu X, Tantillo C, Williams RL, Kamer G, Ferris AL, Clark P. Proc Natl Acad Sci U S A; 1993 Jul 01; 90(13):6320-4. PubMed ID: 7687065 [Abstract] [Full Text] [Related]
20. Broad-spectrum aptamer inhibitors of HIV reverse transcriptase closely mimic natural substrates. Ditzler MA, Bose D, Shkriabai N, Marchand B, Sarafianos SG, Kvaratskhelia M, Burke DH. Nucleic Acids Res; 2011 Oct 01; 39(18):8237-47. PubMed ID: 21727088 [Abstract] [Full Text] [Related] Page: [Next] [New Search]