These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in Lotus japonicus and Rhizophagus irregularis. Handa Y, Nishide H, Takeda N, Suzuki Y, Kawaguchi M, Saito K. Plant Cell Physiol; 2015 Aug; 56(8):1490-511. PubMed ID: 26009592 [Abstract] [Full Text] [Related]
3. Gibberellins interfere with symbiosis signaling and gene expression and alter colonization by arbuscular mycorrhizal fungi in Lotus japonicus. Takeda N, Handa Y, Tsuzuki S, Kojima M, Sakakibara H, Kawaguchi M. Plant Physiol; 2015 Feb; 167(2):545-57. PubMed ID: 25527715 [Abstract] [Full Text] [Related]
4. Fatty acid synthesis and lipid metabolism in the obligate biotrophic fungus Rhizophagus irregularis during mycorrhization of Lotus japonicus. Wewer V, Brands M, Dörmann P. Plant J; 2014 Aug; 79(3):398-412. PubMed ID: 24888347 [Abstract] [Full Text] [Related]
5. An integrated functional approach to dissect systemic responses in maize to arbuscular mycorrhizal symbiosis. Gerlach N, Schmitz J, Polatajko A, Schlüter U, Fahnenstich H, Witt S, Fernie AR, Uroic K, Scholz U, Sonnewald U, Bucher M. Plant Cell Environ; 2015 Aug; 38(8):1591-612. PubMed ID: 25630535 [Abstract] [Full Text] [Related]
11. Dysfunction in the arbuscular mycorrhizal symbiosis has consistent but small effects on the establishment of the fungal microbiota in Lotus japonicus. Xue L, Almario J, Fabiańska I, Saridis G, Bucher M. New Phytol; 2019 Oct; 224(1):409-420. PubMed ID: 31125425 [Abstract] [Full Text] [Related]
12. The cis-acting CTTC-P1BS module is indicative for gene function of LjVTI12, a Qb-SNARE protein gene that is required for arbuscule formation in Lotus japonicus. Lota F, Wegmüller S, Buer B, Sato S, Bräutigam A, Hanf B, Bucher M. Plant J; 2013 Apr; 74(2):280-93. PubMed ID: 23452278 [Abstract] [Full Text] [Related]
13. Isolation and phenotypic characterization of Lotus japonicus mutants specifically defective in arbuscular mycorrhizal formation. Kojima T, Saito K, Oba H, Yoshida Y, Terasawa J, Umehara Y, Suganuma N, Kawaguchi M, Ohtomo R. Plant Cell Physiol; 2014 May; 55(5):928-41. PubMed ID: 24492255 [Abstract] [Full Text] [Related]
17. Molecular dialogue between arbuscular mycorrhizal fungi and the nonhost plant Arabidopsis thaliana switches from initial detection to antagonism. Fernández I, Cosme M, Stringlis IA, Yu K, de Jonge R, van Wees SM, Pozo MJ, Pieterse CMJ, van der Heijden MGA. New Phytol; 2019 Jul; 223(2):867-881. PubMed ID: 30883790 [Abstract] [Full Text] [Related]
19. The Medicago truncatula sucrose transporter family: characterization and implication of key members in carbon partitioning towards arbuscular mycorrhizal fungi. Doidy J, van Tuinen D, Lamotte O, Corneillat M, Alcaraz G, Wipf D. Mol Plant; 2012 Nov; 5(6):1346-58. PubMed ID: 22930732 [Abstract] [Full Text] [Related]
20. Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormone-treated Medicago truncatula roots. Grunwald U, Guo W, Fischer K, Isayenkov S, Ludwig-Müller J, Hause B, Yan X, Küster H, Franken P. Planta; 2009 Apr; 229(5):1023-34. PubMed ID: 19169704 [Abstract] [Full Text] [Related] Page: [Next] [New Search]