These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
210 related items for PubMed ID: 26308720
101. Structure and computation-guided yeast surface display for the evolution of TIMP-based matrix metalloproteinase inhibitors. Shoari A, Khalili-Tanha G, Coban MA, Radisky ES. Front Mol Biosci; 2023; 10():1321956. PubMed ID: 38074088 [Abstract] [Full Text] [Related]
102. Combinatorial engineering of N-TIMP2 variants that selectively inhibit MMP9 and MMP14 function in the cell. Arkadash V, Radisky ES, Papo N. Oncotarget; 2018 Aug 10; 9(62):32036-32053. PubMed ID: 30174795 [Abstract] [Full Text] [Related]
103. Involvement of conserved tryptophan residues for secretion of TIMP-2. Ukaji T, Sasazawa Y, Umezawa K, Simizu S. Oncol Lett; 2014 Mar 10; 7(3):631-634. PubMed ID: 24527068 [Abstract] [Full Text] [Related]
104. A Biomimetic of Endogenous Tissue Inhibitors of Metalloproteinases: Inhibition Mechanism and Contribution of Composition, Polymer Size, and Shape to the Inhibitory Effect. Nakamoto M, Escalante T, Gutiérrez JM, Shea KJ. Nano Lett; 2021 Jul 14; 21(13):5663-5670. PubMed ID: 34181420 [Abstract] [Full Text] [Related]
105. Abiotic Mimic of Endogenous Tissue Inhibitors of Metalloproteinases: Engineering Synthetic Polymer Nanoparticles for Use as a Broad-Spectrum Metalloproteinase Inhibitor. Nakamoto M, Zhao D, Benice OR, Lee SH, Shea KJ. J Am Chem Soc; 2020 Feb 05; 142(5):2338-2345. PubMed ID: 31918547 [Abstract] [Full Text] [Related]
106. Strategies to inhibit the toxicity of systemic TNF treatment. Van Hauwermeiren F, Puimège L, Vandevyver S, Van Bogaert T, Vanlaere I, Huys L, Dejager L, Libert C. Adv Exp Med Biol; 2011 Feb 05; 691():481-4. PubMed ID: 21153352 [No Abstract] [Full Text] [Related]
107. Opposite effects of tissue inhibitor of metalloproteinases-1 (TIMP-1) over-expression and knockdown on colorectal liver metastases. Bandapalli OR, Paul E, Schirmacher P, Brand K. BMC Res Notes; 2012 Jan 09; 5():14. PubMed ID: 22230683 [Abstract] [Full Text] [Related]
108. Multiple functions of tissue inhibitors of metalloproteinases (TIMPs): a new aspect involving osteoclastic bone resorption. Hayakawa T. J Bone Miner Metab; 2002 Jan 09; 20(1):1-13. PubMed ID: 11810410 [No Abstract] [Full Text] [Related]
110. Tumor suppression by stromal TIMPs. Shimoda M, Jackson HW, Khokha R. Mol Cell Oncol; 2016 May 05; 3(3):e975082. PubMed ID: 27314104 [Abstract] [Full Text] [Related]
111. Shedding of Endogenous Interleukin-6 Receptor (IL-6R) Is Governed by A Disintegrin and Metalloproteinase (ADAM) Proteases while a Full-length IL-6R Isoform Localizes to Circulating Microvesicles. Schumacher N, Meyer D, Mauermann A, von der Heyde J, Wolf J, Schwarz J, Knittler K, Murphy G, Michalek M, Garbers C, Bartsch JW, Guo S, Schacher B, Eickholz P, Chalaris A, Rose-John S, Rabe B. J Biol Chem; 2015 Oct 23; 290(43):26059-71. PubMed ID: 26359498 [Abstract] [Full Text] [Related]
112. Extracellular Juxtamembrane Segment of ADAM17 Interacts with Membranes and Is Essential for Its Shedding Activity. Düsterhöft S, Michalek M, Kordowski F, Oldefest M, Sommer A, Röseler J, Reiss K, Grötzinger J, Lorenzen I. Biochemistry; 2015 Sep 29; 54(38):5791-801. PubMed ID: 26348730 [Abstract] [Full Text] [Related]
113. The Repertoire of Tissue Inhibitors of Metalloproteases: Evolution, Regulation of Extracellular Matrix Proteolysis, Engineering and Therapeutic Challenges. Costa S, Ragusa MA, Lo Buglio G, Scilabra SD, Nicosia A. Life (Basel); 2022 Jul 28; 12(8):. PubMed ID: 36013323 [Abstract] [Full Text] [Related]
114. Unravelling the distinct biological functions and potential therapeutic applications of TIMP2 in cancer. Peeney D, Liu Y, Lazaroff C, Gurung S, Stetler-Stevenson WG. Carcinogenesis; 2022 Jun 04; 43(5):405-418. PubMed ID: 35436325 [Abstract] [Full Text] [Related]
115. The Rebirth of Matrix Metalloproteinase Inhibitors: Moving Beyond the Dogma. Fields GB. Cells; 2019 Aug 27; 8(9):. PubMed ID: 31461880 [Abstract] [Full Text] [Related]
116. Translocating a High-Affinity Designer TIMP-1 to the Cell Membrane for Total Renal Carcinoma Inhibition: Putting the Prion Protein to Good Use. Jiang B, Xu Y, Zhang Y, Lee MH. Mol Cell Biol; 2019 Sep 15; 39(18):. PubMed ID: 31208977 [Abstract] [Full Text] [Related]
117. Targeting a Designer TIMP-1 to the Cell Surface for Effective MT1-MMP Inhibition: A Potential Role for the Prion Protein in Renal Carcinoma Therapy. Jiang B, Liu J, Lee MH. Molecules; 2019 Jan 11; 24(2):. PubMed ID: 30641935 [Abstract] [Full Text] [Related]
118. CD44/CD44v6 a Reliable Companion in Cancer-Initiating Cell Maintenance and Tumor Progression. Wang Z, Zhao K, Hackert T, Zöller M. Front Cell Dev Biol; 2018 Jan 11; 6():97. PubMed ID: 30211160 [Abstract] [Full Text] [Related]
119. The Many Facets of Metzincins and Their Endogenous Inhibitors: Perspectives on Ovarian Cancer Progression. Escalona RM, Chan E, Kannourakis G, Findlay JK, Ahmed N. Int J Mol Sci; 2018 Feb 02; 19(2):. PubMed ID: 29393911 [Abstract] [Full Text] [Related]
120. Direct expression of active human tissue inhibitors of metalloproteinases by periplasmic secretion in Escherichia coli. Lee KB, Nam DH, Nuhn JAM, Wang J, Schneider IC, Ge X. Microb Cell Fact; 2017 Apr 28; 16(1):73. PubMed ID: 28454584 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]