These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
132 related items for PubMed ID: 2631194
1. Wheelchair propulsion technique at different speeds. Veeger HE, van der Woude LH, Rozendal RH. Scand J Rehabil Med; 1989; 21(4):197-203. PubMed ID: 2631194 [Abstract] [Full Text] [Related]
2. Wheelchair propulsion efficiency: movement pattern adaptations to speed changes. Vanlandewijck YC, Spaepen AJ, Lysens RJ. Med Sci Sports Exerc; 1994 Nov; 26(11):1373-81. PubMed ID: 7837958 [Abstract] [Full Text] [Related]
4. Seat height in handrim wheelchair propulsion. van der Woude LH, Veeger DJ, Rozendal RH, Sargeant TJ. J Rehabil Res Dev; 1989 Nov; 26(4):31-50. PubMed ID: 2600867 [Abstract] [Full Text] [Related]
5. Influence of task complexity on mechanical efficiency and propulsion technique during learning of hand rim wheelchair propulsion. de Groot S, Veeger HE, Hollander AP, van der Woude LH. Med Eng Phys; 2005 Jan; 27(1):41-9. PubMed ID: 15604003 [Abstract] [Full Text] [Related]
7. Wheelchair racing: effects of rim diameter and speed on physiology and technique. van der Woude LH, Veeger HE, Rozendal RH, van Ingen Schenau GJ, Rooth F, van Nierop P. Med Sci Sports Exerc; 1988 Oct; 20(5):492-500. PubMed ID: 3193866 [Abstract] [Full Text] [Related]
9. Energy cost of propulsion in standard and ultralight wheelchairs in people with spinal cord injuries. Beekman CE, Miller-Porter L, Schoneberger M. Phys Ther; 1999 Feb; 79(2):146-58. PubMed ID: 10029055 [Abstract] [Full Text] [Related]
10. Effect of handrim velocity on mechanical efficiency in wheelchair propulsion. Veeger HE, van der Woude LH, Rozendal RH. Med Sci Sports Exerc; 1992 Jan; 24(1):100-7. PubMed ID: 1548983 [Abstract] [Full Text] [Related]
11. Consequences of a cross slope on wheelchair handrim biomechanics. Richter WM, Rodriguez R, Woods KR, Axelson PW. Arch Phys Med Rehabil; 2007 Jan; 88(1):76-80. PubMed ID: 17207679 [Abstract] [Full Text] [Related]
12. Mechanical efficiency and propulsion technique after 7 weeks of low-intensity wheelchair training. de Groot S, de Bruin M, Noomen SP, van der Woude LH. Clin Biomech (Bristol); 2008 May; 23(4):434-41. PubMed ID: 18077065 [Abstract] [Full Text] [Related]
13. Kinematic characterization of wheelchair propulsion. Shimada SD, Robertson RN, Bonninger ML, Cooper RA. J Rehabil Res Dev; 1998 Jun; 35(2):210-8. PubMed ID: 9651893 [Abstract] [Full Text] [Related]
14. Kinematic and electromyographic analysis of wheelchair propulsion on ramps of different slopes for young men with paraplegia. Chow JW, Millikan TA, Carlton LG, Chae WS, Lim YT, Morse MI. Arch Phys Med Rehabil; 2009 Feb; 90(2):271-8. PubMed ID: 19236980 [Abstract] [Full Text] [Related]
15. The effect of rear wheel camber in manual wheelchair propulsion. Veeger D, van der Woude LH, Rozendal RH. J Rehabil Res Dev; 1989 Feb; 26(2):37-46. PubMed ID: 2724151 [Abstract] [Full Text] [Related]
16. Shoulder biomechanics during the push phase of wheelchair propulsion: a multisite study of persons with paraplegia. Collinger JL, Boninger ML, Koontz AM, Price R, Sisto SA, Tolerico ML, Cooper RA. Arch Phys Med Rehabil; 2008 Apr; 89(4):667-76. PubMed ID: 18373997 [Abstract] [Full Text] [Related]