These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
126 related items for PubMed ID: 26317593
1. A Comparative Insight into Amprenavir Resistance of Mutations V32I, G48V, I50V, I54V, and I84V in HIV-1 Protease Based on Thermodynamic Integration and MM-PBSA Methods. Chen J, Wang X, Zhu T, Zhang Q, Zhang JZ. J Chem Inf Model; 2015 Sep 28; 55(9):1903-13. PubMed ID: 26317593 [Abstract] [Full Text] [Related]
2. A contribution to the drug resistance mechanism of darunavir, amprenavir, indinavir, and saquinavir complexes with HIV-1 protease due to flap mutation I50V: a systematic MM-PBSA and thermodynamic integration study. Leonis G, Steinbrecher T, Papadopoulos MG. J Chem Inf Model; 2013 Aug 26; 53(8):2141-53. PubMed ID: 23834142 [Abstract] [Full Text] [Related]
3. Decoding drug resistant mechanism of V32I, I50V and I84V mutations of HIV-1 protease on amprenavir binding by using molecular dynamics simulations and MM-GBSA calculations. Yu YX, Wang W, Sun HB, Zhang LL, Wang LF, Yin YY. SAR QSAR Environ Res; 2022 Oct 26; 33(10):805-831. PubMed ID: 36322686 [Abstract] [Full Text] [Related]
4. Systematic molecular dynamics, MM-PBSA, and ab initio approaches to the saquinavir resistance mechanism in HIV-1 PR due to 11 double and multiple mutations. Tzoupis H, Leonis G, Avramopoulos A, Mavromoustakos T, Papadopoulos MG. J Phys Chem B; 2014 Aug 14; 118(32):9538-52. PubMed ID: 25036111 [Abstract] [Full Text] [Related]
5. Energetic basis for drug resistance of HIV-1 protease mutants against amprenavir. Kar P, Knecht V. J Comput Aided Mol Des; 2012 Feb 14; 26(2):215-32. PubMed ID: 22350569 [Abstract] [Full Text] [Related]
9. Overcoming drug resistance in HIV-1 chemotherapy: the binding thermodynamics of Amprenavir and TMC-126 to wild-type and drug-resistant mutants of the HIV-1 protease. Ohtaka H, Velázquez-Campoy A, Xie D, Freire E. Protein Sci; 2002 Aug 14; 11(8):1908-16. PubMed ID: 12142445 [Abstract] [Full Text] [Related]
10. Structural and thermodynamic basis of amprenavir/darunavir and atazanavir resistance in HIV-1 protease with mutations at residue 50. Mittal S, Bandaranayake RM, King NM, Prabu-Jeyabalan M, Nalam MN, Nalivaika EA, Yilmaz NK, Schiffer CA. J Virol; 2013 Apr 14; 87(8):4176-84. PubMed ID: 23365446 [Abstract] [Full Text] [Related]
12. Molecular dynamics and free energy studies on the wild-type and double mutant HIV-1 protease complexed with amprenavir and two amprenavir-related inhibitors: mechanism for binding and drug resistance. Hou T, Yu R. J Med Chem; 2007 Mar 22; 50(6):1177-88. PubMed ID: 17300185 [Abstract] [Full Text] [Related]
13. Importance of polar solvation and configurational entropy for design of antiretroviral drugs targeting HIV-1 protease. Kar P, Lipowsky R, Knecht V. J Phys Chem B; 2013 May 16; 117(19):5793-805. PubMed ID: 23614718 [Abstract] [Full Text] [Related]
14. Insights into drug resistance of mutations D30N and I50V to HIV-1 protease inhibitor TMC-114: free energy calculation and molecular dynamic simulation. Chen J, Zhang S, Liu X, Zhang Q. J Mol Model; 2010 Mar 16; 16(3):459-68. PubMed ID: 19629548 [Abstract] [Full Text] [Related]
19. Structural and kinetic analyses of the protease from an amprenavir-resistant human immunodeficiency virus type 1 mutant rendered resistant to saquinavir and resensitized to amprenavir. Markland W, Rao BG, Parsons JD, Black J, Zuchowski L, Tisdale M, Tung R. J Virol; 2000 Aug 16; 74(16):7636-41. PubMed ID: 10906218 [Abstract] [Full Text] [Related]
20. Genotypic and phenotypic cross-resistance patterns to lopinavir and amprenavir in protease inhibitor-experienced patients with HIV viremia. Paulsen D, Liao Q, Fusco G, St Clair M, Shaefer M, Ross L. AIDS Res Hum Retroviruses; 2002 Sep 20; 18(14):1011-9. PubMed ID: 12396453 [Abstract] [Full Text] [Related] Page: [Next] [New Search]