These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


298 related items for PubMed ID: 26317726

  • 1. Effective Hamiltonians for Rapidly Driven Many-Body Lattice Systems: Induced Exchange Interactions and Density-Dependent Hoppings.
    Itin AP, Katsnelson MI.
    Phys Rev Lett; 2015 Aug 14; 115(7):075301. PubMed ID: 26317726
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Extended Bose-Hubbard models with ultracold magnetic atoms.
    Baier S, Mark MJ, Petter D, Aikawa K, Chomaz L, Cai Z, Baranov M, Zoller P, Ferlaino F.
    Science; 2016 Apr 08; 352(6282):201-5. PubMed ID: 27124454
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices.
    Trotzky S, Cheinet P, Fölling S, Feld M, Schnorrberger U, Rey AM, Polkovnikov A, Demler EA, Lukin MD, Bloch I.
    Science; 2008 Jan 18; 319(5861):295-9. PubMed ID: 18096767
    [Abstract] [Full Text] [Related]

  • 6. Bose-Hubbard models with synthetic spin-orbit coupling: Mott insulators, spin textures, and superfluidity.
    Cole WS, Zhang S, Paramekanti A, Trivedi N.
    Phys Rev Lett; 2012 Aug 24; 109(8):085302. PubMed ID: 23002754
    [Abstract] [Full Text] [Related]

  • 7. Schrieffer-Wolff Transformation for Periodically Driven Systems: Strongly Correlated Systems with Artificial Gauge Fields.
    Bukov M, Kolodrubetz M, Polkovnikov A.
    Phys Rev Lett; 2016 Mar 25; 116(12):125301. PubMed ID: 27058085
    [Abstract] [Full Text] [Related]

  • 8. Superfluid-insulator transition in a periodically driven optical lattice.
    Eckardt A, Weiss C, Holthaus M.
    Phys Rev Lett; 2005 Dec 31; 95(26):260404. PubMed ID: 16486320
    [Abstract] [Full Text] [Related]

  • 9. Quantum phase transitions of interacting bosons on hyperbolic lattices.
    Zhu X, Guo J, Breuckmann NP, Guo H, Feng S.
    J Phys Condens Matter; 2021 Jun 29; 33(33):. PubMed ID: 34111850
    [Abstract] [Full Text] [Related]

  • 10. Peierls substitution in an engineered lattice potential.
    Jiménez-García K, LeBlanc LJ, Williams RA, Beeler MC, Perry AR, Spielman IB.
    Phys Rev Lett; 2012 Jun 01; 108(22):225303. PubMed ID: 23003612
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Controlling correlated tunneling and superexchange interactions with ac-driven optical lattices.
    Chen YA, Nascimbène S, Aidelsburger M, Atala M, Trotzky S, Bloch I.
    Phys Rev Lett; 2011 Nov 18; 107(21):210405. PubMed ID: 22181863
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Frustrated Extended Bose-Hubbard Model and Deconfined Quantum Critical Points with Optical Lattices at the Antimagic Wavelength.
    Baldelli N, Cabrera CR, Julià-Farré S, Aidelsburger M, Barbiero L.
    Phys Rev Lett; 2024 Apr 12; 132(15):153401. PubMed ID: 38682994
    [Abstract] [Full Text] [Related]

  • 19. Accurate effective Hamiltonians via unitary flow in Floquet space.
    Verdeny A, Mielke A, Mintert F.
    Phys Rev Lett; 2013 Oct 25; 111(17):175301. PubMed ID: 24206499
    [Abstract] [Full Text] [Related]

  • 20. Phases of a two-dimensional bose gas in an optical lattice.
    Jiménez-García K, Compton RL, Lin YJ, Phillips WD, Porto JV, Spielman IB.
    Phys Rev Lett; 2010 Sep 10; 105(11):110401. PubMed ID: 20867555
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.