These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


154 related items for PubMed ID: 2631958

  • 1. [The effect of plasma viscosity on the resistance of erythrocyte movement along capillaries].
    Kopyl'tsov AV.
    Biofizika; 1989; 34(6):1046-50. PubMed ID: 2631958
    [Abstract] [Full Text] [Related]

  • 2. [Mathematical model of movement of asymmetrical erythrocyte along the capillary].
    Kisliakov IuA, Kopyl'tsov AV.
    Biofizika; 1990; 35(3):473-7. PubMed ID: 2207191
    [Abstract] [Full Text] [Related]

  • 3. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries.
    Damiano ER.
    Microvasc Res; 1998 Jan; 55(1):77-91. PubMed ID: 9473411
    [Abstract] [Full Text] [Related]

  • 4. Influence of rheological parameters on the velocity of erythrocytes passing nailfold capillaries in humans.
    Jung F, Mrowietz C, Hiebl B, Franke RP, Pindur G, Sternitzky R.
    Clin Hemorheol Microcirc; 2011 Jan; 48(1):129-39. PubMed ID: 21876241
    [Abstract] [Full Text] [Related]

  • 5. Capillary blood viscosity in microcirculation.
    Cortinovis A, Crippa A, Cavalli R, Corti M, Cattaneo L.
    Clin Hemorheol Microcirc; 2006 Jan; 35(1-2):183-92. PubMed ID: 16899925
    [Abstract] [Full Text] [Related]

  • 6. [Analysis of geometric parameters and mechanical properties of erythrocytes by filtration through nuclear membrane filters. I. A mathematical model].
    Ataullakhanov FI, Vitvitskiĭ VM, Lisovskaia IL, Tuzhilova EG.
    Biofizika; 1994 Jan; 39(4):672-80. PubMed ID: 7981274
    [Abstract] [Full Text] [Related]

  • 7. Disturbed blood flow structuring as critical factor of hemorheological disorders in microcirculation.
    Mchedlishvili G.
    Clin Hemorheol Microcirc; 1998 Dec; 19(4):315-25. PubMed ID: 9972669
    [Abstract] [Full Text] [Related]

  • 8. Effects of microgravity on microcirculation.
    Majhi SN, Nair VR.
    Microgravity Sci Technol; 1990 Sep; 3(2):117-20. PubMed ID: 11541479
    [Abstract] [Full Text] [Related]

  • 9. Theoretical models of capillary flow.
    Skalak R.
    Blood Cells; 1982 Sep; 8(1):147-52. PubMed ID: 7115972
    [Abstract] [Full Text] [Related]

  • 10. Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells.
    Flower R, Peiretti E, Magnani M, Rossi L, Serafini S, Gryczynski Z, Gryczynski I.
    Invest Ophthalmol Vis Sci; 2008 Dec; 49(12):5510-6. PubMed ID: 18708621
    [Abstract] [Full Text] [Related]

  • 11. Mechanical behavior of the erythrocyte in microvessel stenosis.
    Zhang Z, Zhang X.
    Sci China Life Sci; 2011 May; 54(5):450-8. PubMed ID: 21416230
    [Abstract] [Full Text] [Related]

  • 12. Flow behavior of neonatal and adult erythrocytes in narrow capillaries.
    Stadler A, Linderkamp O.
    Microvasc Res; 1989 May; 37(3):267-79. PubMed ID: 2733599
    [Abstract] [Full Text] [Related]

  • 13. Model of interstitial pressure as a result of cyclical changes in the capillary wall fluid transport.
    Kurbel S, Kurbel B, Belovari T, Marić S, Steiner R, Bozíć D.
    Med Hypotheses; 2001 Aug; 57(2):161-6. PubMed ID: 11461165
    [Abstract] [Full Text] [Related]

  • 14. [Microcirculation patterns and the rheological properties of the blood (a review of literature)].
    Rudaev IaA.
    Probl Gematol Pereliv Krovi; 1974 Sep; 19(9):45-8. PubMed ID: 4617877
    [No Abstract] [Full Text] [Related]

  • 15. Dynamic in vivo measurement of erythrocyte velocity and flow in capillaries and of microvessel diameter in the rat brain by confocal laser microscopy.
    Seylaz J, Charbonné R, Nanri K, Von Euw D, Borredon J, Kacem K, Méric P, Pinard E.
    J Cereb Blood Flow Metab; 1999 Aug; 19(8):863-70. PubMed ID: 10458593
    [Abstract] [Full Text] [Related]

  • 16. Large scale model studies of apparent viscosity and erythrocyte velocity in capillaries.
    Hochmuth RM, Sutera SP.
    Bibl Anat; 1969 Aug; 10():113-23. PubMed ID: 5407354
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. [The assessment of microcirculation based on mathematical models of the hydrodynamics and oxygen transport in the microvessels (II)].
    Mikhaĭlov IuM.
    Anesteziol Reanimatol; 1998 Aug; (4):11-6. PubMed ID: 9770810
    [Abstract] [Full Text] [Related]

  • 19. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels.
    Secomb TW, Styp-Rekowska B, Pries AR.
    Ann Biomed Eng; 2007 May; 35(5):755-65. PubMed ID: 17380392
    [Abstract] [Full Text] [Related]

  • 20. Correlation between rheological parameters and erythrocyte velocity in nailfold capillaries in patients with diabetes mellitus.
    Lawall H, Angelkort B.
    Clin Hemorheol Microcirc; 1999 May; 20(1):41-7. PubMed ID: 11185683
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.