These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
318 related items for PubMed ID: 26320966
1. A simple approach for ultrasensitive detection of bisphenols by multiplexed surface-enhanced Raman scattering. De Bleye C, Dumont E, Hubert C, Sacré PY, Netchacovitch L, Chavez PF, Hubert P, Ziemons E. Anal Chim Acta; 2015 Aug 12; 888():118-25. PubMed ID: 26320966 [Abstract] [Full Text] [Related]
2. Surface-enhanced Raman scattering aptasensor for ultrasensitive trace analysis of bisphenol A. Chung E, Jeon J, Yu J, Lee C, Choo J. Biosens Bioelectron; 2015 Feb 15; 64():560-5. PubMed ID: 25310489 [Abstract] [Full Text] [Related]
3. Surface-imprinted core-shell Au nanoparticles for selective detection of bisphenol A based on surface-enhanced Raman scattering. Xue JQ, Li DW, Qu LL, Long YT. Anal Chim Acta; 2013 May 13; 777():57-62. PubMed ID: 23622965 [Abstract] [Full Text] [Related]
4. Building SERS-active heteroassemblies for ultrasensitive Bisphenol A detection. Feng J, Xu L, Cui G, Wu X, Ma W, Kuang H, Xu C. Biosens Bioelectron; 2016 Jul 15; 81():138-142. PubMed ID: 26943786 [Abstract] [Full Text] [Related]
5. Ultrasensitive and selective detection of copper (II) and mercury (II) ions by dye-coded silver nanoparticle-based SERS probes. Li F, Wang J, Lai Y, Wu C, Sun S, He Y, Ma H. Biosens Bioelectron; 2013 Jan 15; 39(1):82-7. PubMed ID: 22840330 [Abstract] [Full Text] [Related]
6. Single-atom Fe catalytic amplification-gold nanosol SERS/RRS aptamer as platform for the quantification of trace pollutants. Li D, Li C, Wang H, Li J, Zhao Y, Jiang X, Wen G, Liang A, Jiang Z. Mikrochim Acta; 2021 Apr 24; 188(5):175. PubMed ID: 33893886 [Abstract] [Full Text] [Related]
7. A portable optic fiber aptasensor for sensitive, specific and rapid detection of bisphenol-A in water samples. Yildirim N, Long F, He M, Shi HC, Gu AZ. Environ Sci Process Impacts; 2014 May 24; 16(6):1379-86. PubMed ID: 24788953 [Abstract] [Full Text] [Related]
8. SERS strategy based on the modified Au nanoparticles for highly sensitive detection of bisphenol A residues in milk. Yang L, Chen Y, Shen Y, Yang M, Li X, Han X, Jiang X, Zhao B. Talanta; 2018 Mar 01; 179():37-42. PubMed ID: 29310247 [Abstract] [Full Text] [Related]
9. Bisphenol A and its alternatives in Austrian thermal paper receipts, and the migration from reusable plastic drinking bottles into water and artificial saliva using UHPLC-MS/MS. Banaderakhshan R, Kemp P, Breul L, Steinbichl P, Hartmann C, Fürhacker M. Chemosphere; 2022 Jan 01; 286(Pt 3):131842. PubMed ID: 34388431 [Abstract] [Full Text] [Related]
10. Determination of bisphenol A in barreled drinking water by a SPE-LC-MS method. Hao PP. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020 Jan 01; 55(6):697-703. PubMed ID: 32107962 [Abstract] [Full Text] [Related]
11. Highly sensitive surface-enhanced Raman scattering detection of hexavalent chromium based on hollow sea urchin-like TiO2@Ag nanoparticle substrate. Zhou W, Yin BC, Ye BC. Biosens Bioelectron; 2017 Jan 15; 87():187-194. PubMed ID: 27551999 [Abstract] [Full Text] [Related]
12. "Orange alert": a fluorescent detector for bisphenol A in water environments. Zhang L, Er JC, Xu W, Qin X, Samanta A, Jana S, Lee CL, Chang YT. Anal Chim Acta; 2014 Mar 07; 815():51-6. PubMed ID: 24560372 [Abstract] [Full Text] [Related]
13. Functionalized aptamers as nano-bioprobes for ultrasensitive detection of bisphenol-A. Ragavan KV, Selvakumar LS, Thakur MS. Chem Commun (Camb); 2013 Jul 07; 49(53):5960-2. PubMed ID: 23715408 [Abstract] [Full Text] [Related]
14. Simultaneous determination of four trace level endocrine disrupting compounds in environmental samples by solid-phase microextraction coupled with HPLC. Wang L, Zhang Z, Xu X, Zhang D, Wang F, Zhang L. Talanta; 2015 Sep 01; 142():97-103. PubMed ID: 26003697 [Abstract] [Full Text] [Related]
15. Electrochemical sensor based on magnetic molecularly imprinted nanoparticles at surfactant modified magnetic electrode for determination of bisphenol A. Zhu L, Cao Y, Cao G. Biosens Bioelectron; 2014 Apr 15; 54():258-61. PubMed ID: 24287413 [Abstract] [Full Text] [Related]
16. Plasmonic cellulose textile fiber from waste paper for BPA sensing by SERS. Liu S, Cui R, Ma Y, Yu Q, Kannegulla A, Wu B, Fan H, Wang AX, Kong X. Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb 15; 227():117664. PubMed ID: 31670224 [Abstract] [Full Text] [Related]
17. Poly-L-lysine-coated silver nanoparticles as positively charged substrates for surface-enhanced Raman scattering. Marsich L, Bonifacio A, Mandal S, Krol S, Beleites C, Sergo V. Langmuir; 2012 Sep 18; 28(37):13166-71. PubMed ID: 22958086 [Abstract] [Full Text] [Related]
18. Simple Approach for the Rapid Detection of Alternariol in Pear Fruit by Surface-Enhanced Raman Scattering with Pyridine-Modified Silver Nanoparticles. Pan TT, Sun DW, Pu H, Wei Q. J Agric Food Chem; 2018 Mar 07; 66(9):2180-2187. PubMed ID: 29443523 [Abstract] [Full Text] [Related]
19. A surface enhanced Raman scattering quantitative analytical platform for detection of trace Cu coupled the catalytic reaction and gold nanoparticle aggregation with label-free Victoria blue B molecular probe. Li C, Ouyang H, Tang X, Wen G, Liang A, Jiang Z. Biosens Bioelectron; 2017 Jan 15; 87():888-893. PubMed ID: 27662583 [Abstract] [Full Text] [Related]
20. Surface-enhanced Raman spectroscopy detection of polybrominated diphenylethers using a portable Raman spectrometer. Jiang X, Lai Y, Wang W, Jiang W, Zhan J. Talanta; 2013 Nov 15; 116():14-7. PubMed ID: 24148366 [Abstract] [Full Text] [Related] Page: [Next] [New Search]