These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


183 related items for PubMed ID: 26328679

  • 1. Slow sound in lined flow ducts.
    Aurégan Y, Pagneux V.
    J Acoust Soc Am; 2015 Aug; 138(2):605-13. PubMed ID: 26328679
    [Abstract] [Full Text] [Related]

  • 2. An improved multimodal method for sound propagation in nonuniform lined ducts.
    Bi W, Pagneux V, Lafarge D, Aurégan Y.
    J Acoust Soc Am; 2007 Jul; 122(1):280-90. PubMed ID: 17614488
    [Abstract] [Full Text] [Related]

  • 3. On the use of a stress-impedance model to describe sound propagation in a lined duct with grazing flow.
    Aurégan Y.
    J Acoust Soc Am; 2018 May; 143(5):2975. PubMed ID: 29857766
    [Abstract] [Full Text] [Related]

  • 4. Time-domain characterization of the acoustic damping of a perforated liner with bias flow.
    Zhong Z, Zhao D.
    J Acoust Soc Am; 2012 Jul; 132(1):271-81. PubMed ID: 22779476
    [Abstract] [Full Text] [Related]

  • 5. Slow sound laser in lined flow ducts.
    Coutant A, Aurégan Y, Pagneux V.
    J Acoust Soc Am; 2019 Oct; 146(4):2632. PubMed ID: 31672008
    [Abstract] [Full Text] [Related]

  • 6. On the acoustic modes in a cylindrical duct with an arbitrary wall impedance distribution.
    Campos LM, Oliveira JM.
    J Acoust Soc Am; 2004 Dec; 116(6):3336-47. PubMed ID: 15658686
    [Abstract] [Full Text] [Related]

  • 7. Failure of the Ingard-Myers boundary condition for a lined duct: an experimental investigation.
    Renou Y, Aurégan Y.
    J Acoust Soc Am; 2011 Jul; 130(1):52-60. PubMed ID: 21786877
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. An indirect method for the characterization of locally reacting liners.
    Taktak M, Ville JM, Haddar M, Gabard G, Foucart F.
    J Acoust Soc Am; 2010 Jun; 127(6):3548-59. PubMed ID: 20550255
    [Abstract] [Full Text] [Related]

  • 11. Calculations of modes in circumferentially nonuniform lined ducts.
    Bi W.
    J Acoust Soc Am; 2008 May; 123(5):2603-12. PubMed ID: 18529180
    [Abstract] [Full Text] [Related]

  • 12. Isentropic wave propagation in a viscous fluid with uniform flow confined by a lined pipeline.
    Chen Y, Huang Y, Chen X, Bai Y.
    J Acoust Soc Am; 2014 Oct; 136(4):1692-701. PubMed ID: 25324072
    [Abstract] [Full Text] [Related]

  • 13. Stability analysis and design of time-domain acoustic impedance boundary conditions for lined duct with mean flow.
    Liu X, Huang X, Zhang X.
    J Acoust Soc Am; 2014 Nov; 136(5):2441-52. PubMed ID: 25373946
    [Abstract] [Full Text] [Related]

  • 14. In-duct flow computation and acoustic propagation using the admittance multimodal formulation.
    Mangin B, Gabard G, Daroukh M.
    J Acoust Soc Am; 2024 May 01; 155(5):3461-3474. PubMed ID: 38785597
    [Abstract] [Full Text] [Related]

  • 15. Fano resonance scatterings in waveguides with impedance boundary conditions.
    Xiong L, Bi W, Aurégan Y.
    J Acoust Soc Am; 2016 Feb 01; 139(2):764-72. PubMed ID: 26936558
    [Abstract] [Full Text] [Related]

  • 16. Acoustic properties of multiple cavity resonance liner for absorbing higher-order duct modes.
    Zhou D, Wang X, Jing X, Sun X.
    J Acoust Soc Am; 2016 Aug 01; 140(2):1251. PubMed ID: 27586753
    [Abstract] [Full Text] [Related]

  • 17. Experimental observation of a hydrodynamic mode in a flow duct with a porous material.
    Aurégan Y, Singh DK.
    J Acoust Soc Am; 2014 Aug 01; 136(2):567-72. PubMed ID: 25096091
    [Abstract] [Full Text] [Related]

  • 18. Acoustic mode radiation from the termination of a truncated nonlinear internal gravity wave duct in a shallow ocean area.
    Lin YT, Duda TF, Lynch JF.
    J Acoust Soc Am; 2009 Oct 01; 126(4):1752-65. PubMed ID: 19813790
    [Abstract] [Full Text] [Related]

  • 19. A frequency domain linearized Navier-Stokes equations approach to acoustic propagation in flow ducts with sharp edges.
    Kierkegaard A, Boij S, Efraimsson G.
    J Acoust Soc Am; 2010 Feb 01; 127(2):710-9. PubMed ID: 20136193
    [Abstract] [Full Text] [Related]

  • 20. Acoustical scattering by arrays of cylinders in waveguides.
    Cai LW, Dacol DK, Calvo DC, Orris GJ.
    J Acoust Soc Am; 2007 Sep 01; 122(3):1340. PubMed ID: 17927397
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.