These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


908 related items for PubMed ID: 26332897

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Enhanced pearl-chain formation by electrokinetic interaction with the bottom surface of vessel.
    Nishimura S, Matsumura H, Kosuge K, Yamaguchi T.
    Langmuir; 2007 Aug 14; 23(17):8789-97. PubMed ID: 17628082
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Induced charge electroosmosis micropumps using arrays of Janus micropillars.
    Paustian JS, Pascall AJ, Wilson NM, Squires TM.
    Lab Chip; 2014 Sep 07; 14(17):3300-12. PubMed ID: 25000878
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Forces acting on dielectric colloidal spheres at a water/nonpolar-fluid interface in an external electric field. 1. Uncharged particles.
    Danov KD, Kralchevsky PA.
    J Colloid Interface Sci; 2013 Sep 01; 405():278-90. PubMed ID: 23768629
    [Abstract] [Full Text] [Related]

  • 33. Controllable rotating behavior of individual dielectric microrod in a rotating electric field.
    Liu W, Ren Y, Tao Y, Li Y, Chen X.
    Electrophoresis; 2017 Jun 01; 38(11):1427-1433. PubMed ID: 28213894
    [Abstract] [Full Text] [Related]

  • 34. Efficient particle and droplet manipulation utilizing the combined thermal buoyancy convection and temperature-enhanced rotating induced-charge electroosmotic flow.
    Zhang K, Ren Y, Tao Y, Deng X, Liu W, Jiang T, Jiang H.
    Anal Chim Acta; 2020 Feb 01; 1096():108-119. PubMed ID: 31883577
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC, Mey T, Koster S, Verpoorte E.
    Lab Chip; 2009 Jul 07; 9(13):1914-25. PubMed ID: 19532967
    [Abstract] [Full Text] [Related]

  • 37. Polarization behavior of polystyrene particles under direct current and low-frequency (<1 kHz) electric fields in dielectrophoretic systems.
    Saucedo-Espinosa MA, Rauch MM, LaLonde A, Lapizco-Encinas BH.
    Electrophoresis; 2016 Feb 07; 37(4):635-44. PubMed ID: 26531799
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Concentration-Polarization Electroosmosis near Insulating Constrictions within Microfluidic Channels.
    Fernández-Mateo R, Calero V, Morgan H, Ramos A, García-Sánchez P.
    Anal Chem; 2021 Nov 09; 93(44):14667-14674. PubMed ID: 34704741
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 46.