These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
352 related items for PubMed ID: 26335057
1. Red yeasts and carotenoid production: outlining a future for non-conventional yeasts of biotechnological interest. Mannazzu I, Landolfo S, Lopes da Silva T, Buzzini P. World J Microbiol Biotechnol; 2015 Nov; 31(11):1665-73. PubMed ID: 26335057 [Abstract] [Full Text] [Related]
2. Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance. Frengova GI, Beshkova DM. J Ind Microbiol Biotechnol; 2009 Feb; 36(2):163-80. PubMed ID: 18982370 [Abstract] [Full Text] [Related]
3. Carotenoid profiles of yeasts belonging to the genera Rhodotorula, Rhodosporidium, Sporobolomyces, and Sporidiobolus. Buzzini P, Innocenti M, Turchetti B, Libkind D, van Broock M, Mulinacci N. Can J Microbiol; 2007 Aug; 53(8):1024-31. PubMed ID: 17898860 [Abstract] [Full Text] [Related]
4. Phaffia rhodozyma: colorful odyssey. Johnson EA. Int Microbiol; 2003 Sep; 6(3):169-74. PubMed ID: 12898396 [Abstract] [Full Text] [Related]
5. Enhanced antioxidant formula based on a selenium-supplemented carotenoid-producing yeast biomass. Breierová E, Gregor T, Marová I, Certík M, Kogan G. Chem Biodivers; 2008 Mar; 5(3):440-6. PubMed ID: 18357552 [Abstract] [Full Text] [Related]
6. The Involvement of Mig1 from Xanthophyllomyces dendrorhous in Catabolic Repression: An Active Mechanism Contributing to the Regulation of Carotenoid Production. Alcaíno J, Bravo N, Córdova P, Marcoleta AE, Contreras G, Barahona S, Sepúlveda D, Fernández-Lobato M, Baeza M, Cifuentes V. PLoS One; 2016 Mar; 11(9):e0162838. PubMed ID: 27622474 [Abstract] [Full Text] [Related]
7. Biotechnological production of carotenoids by yeasts: an overview. Mata-Gómez LC, Montañez JC, Méndez-Zavala A, Aguilar CN. Microb Cell Fact; 2014 Jan 21; 13():12. PubMed ID: 24443802 [Abstract] [Full Text] [Related]
8. Use of several waste substrates for carotenoid-rich yeast biomass production. Marova I, Carnecka M, Halienova A, Certik M, Dvorakova T, Haronikova A. J Environ Manage; 2012 Mar 21; 95 Suppl():S338-42. PubMed ID: 21741756 [Abstract] [Full Text] [Related]
11. Diversity of Red Yeasts in Various Regions and Environments of Poland and Biotechnological Potential of the Isolated Strains. Kot AM, Sęk W, Kieliszek M, Błażejak S, Pobiega K, Brzezińska R. Appl Biochem Biotechnol; 2024 Jun 21; 196(6):3274-3316. PubMed ID: 37646889 [Abstract] [Full Text] [Related]
13. Red yeasts and their carotenogenic enzymes for microbial carotenoid production. Watcharawipas A, Runguphan W. FEMS Yeast Res; 2023 Jan 04; 23():. PubMed ID: 36513367 [Abstract] [Full Text] [Related]
14. Carotenoid Production in Oleaginous Yeasts. Kanamoto H, Nakamura K, Misawa N. Adv Exp Med Biol; 2021 Jan 04; 1261():153-163. PubMed ID: 33783737 [Abstract] [Full Text] [Related]
15. Genetic manipulation of Xanthophyllomyces dendrorhous and Phaffia rhodozyma. Lin G, Bultman J, Johnson EA, Fell JW. Methods Mol Biol; 2012 Jan 04; 898():235-49. PubMed ID: 22711130 [Abstract] [Full Text] [Related]
16. Isolation of carotenoid hyperproducing mutants of Xanthophyllomyces dendrorhous (Phaffia rhodozyma) by flow cytometry and cell sorting. Brehm-Stecher BF, Johnson EA. Methods Mol Biol; 2012 Jan 04; 898():207-17. PubMed ID: 22711128 [Abstract] [Full Text] [Related]