These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


405 related items for PubMed ID: 26337748

  • 1. In vivo detection of SERS-encoded plasmonic nanostars in human skin grafts and live animal models.
    Register JK, Fales AM, Wang HN, Norton SJ, Cho EH, Boico A, Pradhan S, Kim J, Schroeder T, Wisniewski NA, Klitzman B, Vo-Dinh T.
    Anal Bioanal Chem; 2015 Nov; 407(27):8215-24. PubMed ID: 26337748
    [Abstract] [Full Text] [Related]

  • 2. SERS nanosensors and nanoreporters: golden opportunities in biomedical applications.
    Vo-Dinh T, Liu Y, Fales AM, Ngo H, Wang HN, Register JK, Yuan H, Norton SJ, Griffin GD.
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2015 Nov; 7(1):17-33. PubMed ID: 25316579
    [Abstract] [Full Text] [Related]

  • 3. Quantitative surface-enhanced resonant Raman scattering multiplexing of biocompatible gold nanostars for in vitro and ex vivo detection.
    Yuan H, Liu Y, Fales AM, Li YL, Liu J, Vo-Dinh T.
    Anal Chem; 2013 Jan 02; 85(1):208-12. PubMed ID: 23194068
    [Abstract] [Full Text] [Related]

  • 4. Raman Reporter-Coupled Ag(core)@Au(shell) Nanostars for in Vivo Improved Surface Enhanced Raman Scattering Imaging and Near-infrared-Triggered Photothermal Therapy in Breast Cancers.
    Zeng L, Pan Y, Wang S, Wang X, Zhao X, Ren W, Lu G, Wu A.
    ACS Appl Mater Interfaces; 2015 Aug 05; 7(30):16781-91. PubMed ID: 26204589
    [Abstract] [Full Text] [Related]

  • 5. Spectral Characterization and Intracellular Detection of Surface-Enhanced Raman Scattering (SERS)-Encoded Plasmonic Gold Nanostars.
    Yuan H, Fales AM, Khoury CG, Liu J, Vo-Dinh T.
    J Raman Spectrosc; 2013 Feb 05; 44(2):234-239. PubMed ID: 24839346
    [Abstract] [Full Text] [Related]

  • 6. Reduced graphene oxide-supported gold nanostars for improved SERS sensing and drug delivery.
    Wang Y, Polavarapu L, Liz-Marzán LM.
    ACS Appl Mater Interfaces; 2014 Dec 24; 6(24):21798-805. PubMed ID: 24827538
    [Abstract] [Full Text] [Related]

  • 7. Plasmonics-based nanostructures for surface-enhanced Raman scattering bioanalysis.
    Vo-Dinh T, Yan F, Stokes DL.
    Methods Mol Biol; 2005 Dec 24; 300():255-83. PubMed ID: 15657488
    [Abstract] [Full Text] [Related]

  • 8. Solution processed polydimethylsiloxane/gold nanostar flexible substrates for plasmonic sensing.
    Shiohara A, Langer J, Polavarapu L, Liz-Marzán LM.
    Nanoscale; 2014 Aug 21; 6(16):9817-23. PubMed ID: 25027634
    [Abstract] [Full Text] [Related]

  • 9. Gold nanostars for efficient in vitro and in vivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging.
    Tian F, Conde J, Bao C, Chen Y, Curtin J, Cui D.
    Biomaterials; 2016 Nov 21; 106():87-97. PubMed ID: 27552319
    [Abstract] [Full Text] [Related]

  • 10. Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars.
    Zhang Q, Large N, Wang H.
    ACS Appl Mater Interfaces; 2014 Oct 08; 6(19):17255-67. PubMed ID: 25222940
    [Abstract] [Full Text] [Related]

  • 11. A reproducible SERS substrate based on electrostatically assisted APTES-functionalized surface-assembly of gold nanostars.
    Su Q, Ma X, Dong J, Jiang C, Qian W.
    ACS Appl Mater Interfaces; 2011 Jun 08; 3(6):1873-9. PubMed ID: 21528839
    [Abstract] [Full Text] [Related]

  • 12. Development of nanostars as a biocompatible tumor contrast agent: toward in vivo SERS imaging.
    D'Hollander A, Mathieu E, Jans H, Vande Velde G, Stakenborg T, Van Dorpe P, Himmelreich U, Lagae L.
    Int J Nanomedicine; 2016 Jun 08; 11():3703-14. PubMed ID: 27536107
    [Abstract] [Full Text] [Related]

  • 13. Tuning gold nanostar morphology for the SERS detection of uranyl.
    Harder RA, Wijenayaka LA, Phan HT, Haes AJ.
    J Raman Spectrosc; 2021 Feb 08; 52(2):497-505. PubMed ID: 34177076
    [Abstract] [Full Text] [Related]

  • 14. Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications.
    Li M, Cushing SK, Zhang J, Lankford J, Aguilar ZP, Ma D, Wu N.
    Nanotechnology; 2012 Mar 23; 23(11):115501. PubMed ID: 22383452
    [Abstract] [Full Text] [Related]

  • 15. Multi-branched gold nanostars with fractal structure for SERS detection of the pesticide thiram.
    Zhu J, Liu MJ, Li JJ, Li X, Zhao JW.
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan 15; 189():586-593. PubMed ID: 28881284
    [Abstract] [Full Text] [Related]

  • 16. Gold Nanostar Spatial Distribution Impacts the Surface-Enhanced Raman Scattering Detection of Uranyl on Amidoximated Polymers.
    Phan HT, Vinson C, Haes AJ.
    Langmuir; 2021 Apr 27; 37(16):4891-4899. PubMed ID: 33861606
    [Abstract] [Full Text] [Related]

  • 17. Nano graphene oxide-wrapped gold nanostars as ultrasensitive and stable SERS nanoprobes.
    Jalani G, Cerruti M.
    Nanoscale; 2015 Jun 14; 7(22):9990-7. PubMed ID: 25981393
    [Abstract] [Full Text] [Related]

  • 18. Greater SERS Activity of Ligand-Stabilized Gold Nanostars with Sharp Branches.
    Meng X, Dyer J, Huo Y, Jiang C.
    Langmuir; 2020 Apr 07; 36(13):3558-3564. PubMed ID: 32176502
    [Abstract] [Full Text] [Related]

  • 19. Gold Nanostars For Surface-Enhanced Raman Scattering: Synthesis, Characterization and Optimization.
    Khoury CG, Vo-Dinh T.
    J Phys Chem C Nanomater Interfaces; 2008 Apr 07; 2008(112):18849-18859. PubMed ID: 23977403
    [Abstract] [Full Text] [Related]

  • 20. Plasmonic properties of regiospecific core-satellite assemblies of gold nanostars and nanospheres.
    Indrasekara AS, Thomas R, Fabris L.
    Phys Chem Chem Phys; 2015 Sep 07; 17(33):21133-42. PubMed ID: 25380028
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.