These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
352 related items for PubMed ID: 26339991
1. Extremely low-frequency electromagnetic fields enhance the proliferation and differentiation of neural progenitor cells cultured from ischemic brains. Cheng Y, Dai Y, Zhu X, Xu H, Cai P, Xia R, Mao L, Zhao BQ, Fan W. Neuroreport; 2015 Oct 21; 26(15):896-902. PubMed ID: 26339991 [Abstract] [Full Text] [Related]
2. Extremely Low-Frequency Electromagnetic Fields Promote In Vitro Neuronal Differentiation and Neurite Outgrowth of Embryonic Neural Stem Cells via Up-Regulating TRPC1. Ma Q, Chen C, Deng P, Zhu G, Lin M, Zhang L, Xu S, He M, Lu Y, Duan W, Pi H, Cao Z, Pei L, Li M, Liu C, Zhang Y, Zhong M, Zhou Z, Yu Z. PLoS One; 2016 Oct 21; 11(3):e0150923. PubMed ID: 26950212 [Abstract] [Full Text] [Related]
3. Egr1 mediated the neuronal differentiation induced by extremely low-frequency electromagnetic fields. Seong Y, Moon J, Kim J. Life Sci; 2014 Apr 25; 102(1):16-27. PubMed ID: 24603130 [Abstract] [Full Text] [Related]
4. Extremely low-frequency electromagnetic fields induce neural differentiation in bone marrow derived mesenchymal stem cells. Kim HJ, Jung J, Park JH, Kim JH, Ko KN, Kim CW. Exp Biol Med (Maywood); 2013 Aug 01; 238(8):923-31. PubMed ID: 23970408 [Abstract] [Full Text] [Related]
5. Subventricular zone-derived neural progenitor cells migrate along a blood vessel scaffold toward the post-stroke striatum. Kojima T, Hirota Y, Ema M, Takahashi S, Miyoshi I, Okano H, Sawamoto K. Stem Cells; 2010 Mar 31; 28(3):545-54. PubMed ID: 20073084 [Abstract] [Full Text] [Related]
6. Electromagnetic fields affect transcript levels of apoptosis-related genes in embryonic stem cell-derived neural progenitor cells. Nikolova T, Czyz J, Rolletschek A, Blyszczuk P, Fuchs J, Jovtchev G, Schuderer J, Kuster N, Wobus AM. FASEB J; 2005 Oct 31; 19(12):1686-8. PubMed ID: 16116041 [Abstract] [Full Text] [Related]
7. 50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: possible involvement of a redox mechanism. Wolf FI, Torsello A, Tedesco B, Fasanella S, Boninsegna A, D'Ascenzo M, Grassi C, Azzena GB, Cittadini A. Biochim Biophys Acta; 2005 Mar 22; 1743(1-2):120-9. PubMed ID: 15777847 [Abstract] [Full Text] [Related]
8. Extremely low-frequency electromagnetic fields affect transcript levels of neuronal differentiation-related genes in embryonic neural stem cells. Ma Q, Deng P, Zhu G, Liu C, Zhang L, Zhou Z, Luo X, Li M, Zhong M, Yu Z, Chen C, Zhang Y. PLoS One; 2014 Mar 22; 9(3):e90041. PubMed ID: 24595264 [Abstract] [Full Text] [Related]
9. Delayed Treatment with Green Tea Polyphenol EGCG Promotes Neurogenesis After Ischemic Stroke in Adult Mice. Zhang JC, Xu H, Yuan Y, Chen JY, Zhang YJ, Lin Y, Yuan SY. Mol Neurobiol; 2017 Jul 22; 54(5):3652-3664. PubMed ID: 27206430 [Abstract] [Full Text] [Related]
10. Effect of extremely low frequency electromagnetic field on MAP2 and Nestin gene expression of hair follicle dermal papilla cells. Moraveji M, Haghighipour N, Keshvari H, Nourizadeh Abbariki T, Shokrgozar MA, Amanzadeh A. Int J Artif Organs; 2016 Aug 19; 39(6):294-9. PubMed ID: 27515859 [Abstract] [Full Text] [Related]
11. Bidirectional frequency-dependent effect of extremely low-frequency electromagnetic field on E. coli K-12. Martirosyan V, Baghdasaryan N, Ayrapetyan S. Electromagn Biol Med; 2013 Sep 19; 32(3):291-300. PubMed ID: 23046211 [Abstract] [Full Text] [Related]
12. Exposure to extremely low-frequency electromagnetic fields inhibits T-type calcium channels via AA/LTE4 signaling pathway. Cui Y, Liu X, Yang T, Mei YA, Hu C. Cell Calcium; 2014 Jan 19; 55(1):48-58. PubMed ID: 24360572 [Abstract] [Full Text] [Related]
13. Comparison of the genotoxic effects induced by 50 Hz extremely low-frequency electromagnetic fields and 1800 MHz radiofrequency electromagnetic fields in GC-2 cells. Duan W, Liu C, Zhang L, He M, Xu S, Chen C, Pi H, Gao P, Zhang Y, Zhong M, Yu Z, Zhou Z. Radiat Res; 2015 Mar 19; 183(3):305-14. PubMed ID: 25688995 [Abstract] [Full Text] [Related]
14. Exposure to extremely low-frequency (50 Hz) electromagnetic fields enhances adult hippocampal neurogenesis in C57BL/6 mice. Cuccurazzu B, Leone L, Podda MV, Piacentini R, Riccardi E, Ripoli C, Azzena GB, Grassi C. Exp Neurol; 2010 Nov 19; 226(1):173-82. PubMed ID: 20816824 [Abstract] [Full Text] [Related]
15. A 60 Hz uniform electromagnetic field promotes human cell proliferation by decreasing intracellular reactive oxygen species levels. Song K, Im SH, Yoon YJ, Kim HM, Lee HJ, Park GS. PLoS One; 2018 Nov 19; 13(7):e0199753. PubMed ID: 30011321 [Abstract] [Full Text] [Related]
16. Extremely low frequency electromagnetic field enhances human keratinocyte cell growth and decreases proinflammatory chemokine production. Vianale G, Reale M, Amerio P, Stefanachi M, Di Luzio S, Muraro R. Br J Dermatol; 2008 Jun 19; 158(6):1189-96. PubMed ID: 18410412 [Abstract] [Full Text] [Related]
17. Effect of 1 mT sinusoidal electromagnetic fields on proliferation and osteogenic differentiation of rat bone marrow mesenchymal stromal cells. Liu C, Yu J, Yang Y, Tang X, Zhao D, Zhao W, Wu H. Bioelectromagnetics; 2013 Sep 19; 34(6):453-64. PubMed ID: 23589052 [Abstract] [Full Text] [Related]
18. Enhanced growth and osteogenic differentiation of Induced Pluripotent Stem cells by Extremely Low-Frequency Electromagnetic Field. Ardeshirylajimi A, Soleimani M. Cell Mol Biol (Noisy-le-grand); 2015 Mar 09; 61(1):36-41. PubMed ID: 25817344 [Abstract] [Full Text] [Related]
19. Zinc Sulphate Mediates the Stimulation of Cell Proliferation of Rat Adipose Tissue-Derived Mesenchymal Stem Cells Under High Intensity of EMF Exposure. Fathi E, Farahzadi R. Biol Trace Elem Res; 2018 Aug 09; 184(2):529-535. PubMed ID: 29189996 [Abstract] [Full Text] [Related]
20. Effects of exposure to extremely low-frequency electromagnetic fields on the differentiation of Th17 T cells and regulatory T cells. Lee YJ, Hyung KE, Yoo JS, Jang YW, Kim SJ, Lee DI, Lee SJ, Park SY, Jeong JH, Hwang KW. Gen Physiol Biophys; 2016 Oct 09; 35(4):487-495. PubMed ID: 27527723 [Abstract] [Full Text] [Related] Page: [Next] [New Search]