These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


332 related items for PubMed ID: 26344767

  • 1. miR-199a Links MeCP2 with mTOR Signaling and Its Dysregulation Leads to Rett Syndrome Phenotypes.
    Tsujimura K, Irie K, Nakashima H, Egashira Y, Fukao Y, Fujiwara M, Itoh M, Uesaka M, Imamura T, Nakahata Y, Yamashita Y, Abe T, Takamori S, Nakashima K.
    Cell Rep; 2015 Sep 22; 12(11):1887-901. PubMed ID: 26344767
    [Abstract] [Full Text] [Related]

  • 2. [Novel function of MeCP2 in the pathophysiology of Rett syndrome: Regulation of mTOR signaling mediated by MeCP2-dependent microRNA processing].
    Tsujimura K, Nakashima K.
    Seikagaku; 2017 Feb 22; 89(1):51-61. PubMed ID: 29624958
    [No Abstract] [Full Text] [Related]

  • 3. MeCP2 controls neural stem cell fate specification through miR-199a-mediated inhibition of BMP-Smad signaling.
    Nakashima H, Tsujimura K, Irie K, Imamura T, Trujillo CA, Ishizu M, Uesaka M, Pan M, Noguchi H, Okada K, Aoyagi K, Andoh-Noda T, Okano H, Muotri AR, Nakashima K.
    Cell Rep; 2021 May 18; 35(7):109124. PubMed ID: 34010654
    [Abstract] [Full Text] [Related]

  • 4. Reduced AKT/mTOR signaling and protein synthesis dysregulation in a Rett syndrome animal model.
    Ricciardi S, Boggio EM, Grosso S, Lonetti G, Forlani G, Stefanelli G, Calcagno E, Morello N, Landsberger N, Biffo S, Pizzorusso T, Giustetto M, Broccoli V.
    Hum Mol Genet; 2011 Mar 15; 20(6):1182-96. PubMed ID: 21212100
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Regulation mechanism and research progress of MeCP2 in Rett syndrome.
    Yang W, Pan H.
    Yi Chuan; 2014 Jul 15; 36(7):625-30. PubMed ID: 25076025
    [Abstract] [Full Text] [Related]

  • 8. MeCP2 expression and function during brain development: implications for Rett syndrome's pathogenesis and clinical evolution.
    Kaufmann WE, Johnston MV, Blue ME.
    Brain Dev; 2005 Nov 15; 27 Suppl 1():S77-S87. PubMed ID: 16182491
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Altered somatosensory barrel cortex refinement in the developing brain of Mecp2-null mice.
    Moroto M, Nishimura A, Morimoto M, Isoda K, Morita T, Yoshida M, Morioka S, Tozawa T, Hasegawa T, Chiyonobu T, Yoshimoto K, Hosoi H.
    Brain Res; 2013 Nov 06; 1537():319-26. PubMed ID: 24060648
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Genome-wide analysis reveals methyl-CpG-binding protein 2-dependent regulation of microRNAs in a mouse model of Rett syndrome.
    Wu H, Tao J, Chen PJ, Shahab A, Ge W, Hart RP, Ruan X, Ruan Y, Sun YE.
    Proc Natl Acad Sci U S A; 2010 Oct 19; 107(42):18161-6. PubMed ID: 20921386
    [Abstract] [Full Text] [Related]

  • 17. Disrupted microRNA expression caused by Mecp2 loss in a mouse model of Rett syndrome.
    Urdinguio RG, Fernandez AF, Lopez-Nieva P, Rossi S, Huertas D, Kulis M, Liu CG, Croce CM, Calin GA, Esteller M.
    Epigenetics; 2010 Oct 01; 5(7):656-63. PubMed ID: 20716963
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Reduction of aberrant NF-κB signalling ameliorates Rett syndrome phenotypes in Mecp2-null mice.
    Kishi N, MacDonald JL, Ye J, Molyneaux BJ, Azim E, Macklis JD.
    Nat Commun; 2016 Jan 29; 7():10520. PubMed ID: 26821816
    [Abstract] [Full Text] [Related]

  • 20. Methyl CpG-binding protein 2 (a mutation of which causes Rett syndrome) directly regulates insulin-like growth factor binding protein 3 in mouse and human brains.
    Itoh M, Ide S, Takashima S, Kudo S, Nomura Y, Segawa M, Kubota T, Mori H, Tanaka S, Horie H, Tanabe Y, Goto Y.
    J Neuropathol Exp Neurol; 2007 Feb 29; 66(2):117-23. PubMed ID: 17278996
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.