These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Enhanced Gene Expression Rather than Natural Polymorphism in Coding Sequence of the OsbZIP23 Determines Drought Tolerance and Yield Improvement in Rice Genotypes. Dey A, Samanta MK, Gayen S, Sen SK, Maiti MK. PLoS One; 2016 Jul 27; 11(3):e0150763. PubMed ID: 26959651 [Abstract] [Full Text] [Related]
3. Comparative analysis of drought-responsive transcriptome in Indica rice genotypes with contrasting drought tolerance. Lenka SK, Katiyar A, Chinnusamy V, Bansal KC. Plant Biotechnol J; 2011 Apr 27; 9(3):315-27. PubMed ID: 20809928 [Abstract] [Full Text] [Related]
4. Identification of four functionally important microRNA families with contrasting differential expression profiles between drought-tolerant and susceptible rice leaf at vegetative stage. Cheah BH, Nadarajah K, Divate MD, Wickneswari R. BMC Genomics; 2015 Sep 15; 16(1):692. PubMed ID: 26369665 [Abstract] [Full Text] [Related]
5. Genome wide association study (GWAS) for grain yield in rice cultivated under water deficit. Pantalião GF, Narciso M, Guimarães C, Castro A, Colombari JM, Breseghello F, Rodrigues L, Vianello RP, Borba TO, Brondani C. Genetica; 2016 Dec 15; 144(6):651-664. PubMed ID: 27722804 [Abstract] [Full Text] [Related]
6. Transcriptome analysis in different rice cultivars provides novel insights into desiccation and salinity stress responses. Shankar R, Bhattacharjee A, Jain M. Sci Rep; 2016 Mar 31; 6():23719. PubMed ID: 27029818 [Abstract] [Full Text] [Related]
7. Comprehensive transcriptomic study on horse gram (Macrotyloma uniflorum): De novo assembly, functional characterization and comparative analysis in relation to drought stress. Bhardwaj J, Chauhan R, Swarnkar MK, Chahota RK, Singh AK, Shankar R, Yadav SK. BMC Genomics; 2013 Sep 23; 14():647. PubMed ID: 24059455 [Abstract] [Full Text] [Related]
8. Transcriptome sequencing of two wild barley (Hordeum spontaneum L.) ecotypes differentially adapted to drought stress reveals ecotype-specific transcripts. Bedada G, Westerbergh A, Müller T, Galkin E, Bdolach E, Moshelion M, Fridman E, Schmid KJ. BMC Genomics; 2014 Nov 19; 15(1):995. PubMed ID: 25408241 [Abstract] [Full Text] [Related]
9. Identification of drought-responsive genes in roots of upland rice (Oryza sativa L). Rabello AR, Guimarães CM, Rangel PH, da Silva FR, Seixas D, de Souza E, Brasileiro AC, Spehar CR, Ferreira ME, Mehta A. BMC Genomics; 2008 Oct 15; 9():485. PubMed ID: 18922162 [Abstract] [Full Text] [Related]
11. De novo Transcriptome Assembly of Common Wild Rice (Oryza rufipogon Griff.) and Discovery of Drought-Response Genes in Root Tissue Based on Transcriptomic Data. Tian XJ, Long Y, Wang J, Zhang JW, Wang YY, Li WM, Peng YF, Yuan QH, Pei XW. PLoS One; 2015 Oct 15; 10(7):e0131455. PubMed ID: 26134138 [Abstract] [Full Text] [Related]
13. Genome-wide analyses of direct target genes of four rice NAC-domain transcription factors involved in drought tolerance. Chung PJ, Jung H, Choi YD, Kim JK. BMC Genomics; 2018 Jan 12; 19(1):40. PubMed ID: 29329517 [Abstract] [Full Text] [Related]
14. Comparative transcriptome sequencing of tolerant rice introgression line and its parents in response to drought stress. Huang L, Zhang F, Zhang F, Wang W, Zhou Y, Fu B, Li Z. BMC Genomics; 2014 Nov 26; 15(1):1026. PubMed ID: 25428615 [Abstract] [Full Text] [Related]
16. RNA-Seq analysis identifies genes associated with differential reproductive success under drought-stress in accessions of wild barley Hordeum spontaneum. Hübner S, Korol AB, Schmid KJ. BMC Plant Biol; 2015 Jun 09; 15():134. PubMed ID: 26055625 [Abstract] [Full Text] [Related]
17. Effects of drought stress on global gene expression profile in leaf and root samples of Dongxiang wild rice (Oryza rufipogon). Zhang F, Zhou Y, Zhang M, Luo X, Xie J. Biosci Rep; 2017 Jun 30; 37(3):. PubMed ID: 28424372 [Abstract] [Full Text] [Related]