These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
168 related items for PubMed ID: 26355787
21. A new method for predicting essential proteins based on participation degree in protein complex and subgraph density. Lei X, Yang X. PLoS One; 2018; 13(6):e0198998. PubMed ID: 29894517 [Abstract] [Full Text] [Related]
23. Iteration method for predicting essential proteins based on orthology and protein-protein interaction networks. Peng W, Wang J, Wang W, Liu Q, Wu FX, Pan Y. BMC Syst Biol; 2012 Jul 18; 6():87. PubMed ID: 22808943 [Abstract] [Full Text] [Related]
24. A local average connectivity-based method for identifying essential proteins from the network level. Li M, Wang J, Chen X, Wang H, Pan Y. Comput Biol Chem; 2011 Jun 18; 35(3):143-50. PubMed ID: 21704260 [Abstract] [Full Text] [Related]
25. Protein complex prediction in large ontology attributed protein-protein interaction networks. Zhang Y, Lin H, Yang Z, Wang J, Li Y, Xu B. IEEE/ACM Trans Comput Biol Bioinform; 2013 Jun 18; 10(3):729-41. PubMed ID: 24091405 [Abstract] [Full Text] [Related]
26. CytoNCA: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Tang Y, Li M, Wang J, Pan Y, Wu FX. Biosystems; 2015 Jan 18; 127():67-72. PubMed ID: 25451770 [Abstract] [Full Text] [Related]
27. Examination of the relationship between essential genes in PPI network and hub proteins in reverse nearest neighbor topology. Ning K, Ng HK, Srihari S, Leong HW, Nesvizhskii AI. BMC Bioinformatics; 2010 Oct 12; 11():505. PubMed ID: 20939873 [Abstract] [Full Text] [Related]
28. A New Method for Identifying Essential Proteins Based on Network Topology Properties and Protein Complexes. Qin C, Sun Y, Dong Y. PLoS One; 2016 Oct 12; 11(8):e0161042. PubMed ID: 27529423 [Abstract] [Full Text] [Related]
29. Construction of Refined Protein Interaction Network for Predicting Essential Proteins. Li M, Ni P, Chen X, Wang J, Wu FX, Pan Y. IEEE/ACM Trans Comput Biol Bioinform; 2019 Oct 12; 16(4):1386-1397. PubMed ID: 28186903 [Abstract] [Full Text] [Related]
30. Comparative analysis of gene ontology-based semantic similarity measurements for the application of identifying essential proteins. Xue X, Zhang W, Fan A. PLoS One; 2023 Oct 12; 18(4):e0284274. PubMed ID: 37083829 [Abstract] [Full Text] [Related]
34. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering. Theofilatos K, Pavlopoulou N, Papasavvas C, Likothanassis S, Dimitrakopoulos C, Georgopoulos E, Moschopoulos C, Mavroudi S. Artif Intell Med; 2015 Mar 12; 63(3):181-9. PubMed ID: 25765008 [Abstract] [Full Text] [Related]
35. Network-based prediction and knowledge mining of disease genes. Carson MB, Lu H. BMC Med Genomics; 2015 Mar 12; 8 Suppl 2(Suppl 2):S9. PubMed ID: 26043920 [Abstract] [Full Text] [Related]
37. A Deep Learning Framework for Identifying Essential Proteins by Integrating Multiple Types of Biological Information. Zeng M, Li M, Fei Z, Wu FX, Li Y, Pan Y, Wang J. IEEE/ACM Trans Comput Biol Bioinform; 2021 Mar 12; 18(1):296-305. PubMed ID: 30736002 [Abstract] [Full Text] [Related]
40. From Function to Interaction: A New Paradigm for Accurately Predicting Protein Complexes Based on Protein-to-Protein Interaction Networks. Xu B, Guan J. IEEE/ACM Trans Comput Biol Bioinform; 2014 Mar 12; 11(4):616-27. PubMed ID: 26356332 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]