These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


170 related items for PubMed ID: 26357216

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Identification of essential proteins based on edge clustering coefficient.
    Wang J, Li M, Wang H, Pan Y.
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1070-80. PubMed ID: 22084147
    [Abstract] [Full Text] [Related]

  • 3. A Topology Potential-Based Method for Identifying Essential Proteins from PPI Networks.
    Li M, Lu Y, Wang J, Wu FX, Pan Y.
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):372-83. PubMed ID: 26357224
    [Abstract] [Full Text] [Related]

  • 4. An iteration method for identifying yeast essential proteins from heterogeneous network.
    Zhao B, Zhao Y, Zhang X, Zhang Z, Zhang F, Wang L.
    BMC Bioinformatics; 2019 Jun 24; 20(1):355. PubMed ID: 31234779
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Essential Protein Detection by Random Walk on Weighted Protein-Protein Interaction Networks.
    Xu B, Guan J, Wang Y, Wang Z.
    IEEE/ACM Trans Comput Biol Bioinform; 2019 Jun 24; 16(2):377-387. PubMed ID: 28504946
    [Abstract] [Full Text] [Related]

  • 10. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering.
    Theofilatos K, Pavlopoulou N, Papasavvas C, Likothanassis S, Dimitrakopoulos C, Georgopoulos E, Moschopoulos C, Mavroudi S.
    Artif Intell Med; 2015 Mar 24; 63(3):181-9. PubMed ID: 25765008
    [Abstract] [Full Text] [Related]

  • 11. United Neighborhood Closeness Centrality and Orthology for Predicting Essential Proteins.
    Li G, Li M, Wang J, Li Y, Pan Y.
    IEEE/ACM Trans Comput Biol Bioinform; 2020 Mar 24; 17(4):1451-1458. PubMed ID: 30596582
    [Abstract] [Full Text] [Related]

  • 12. A novel method to predict essential proteins based on tensor and HITS algorithm.
    Zhang Z, Luo Y, Hu S, Li X, Wang L, Zhao B.
    Hum Genomics; 2020 Apr 06; 14(1):14. PubMed ID: 32252824
    [Abstract] [Full Text] [Related]

  • 13. Identification of Essential Proteins Based on a New Combination of Local Interaction Density and Protein Complexes.
    Luo J, Qi Y.
    PLoS One; 2015 Apr 06; 10(6):e0131418. PubMed ID: 26125187
    [Abstract] [Full Text] [Related]

  • 14. Prediction of essential proteins based on subcellular localization and gene expression correlation.
    Fan Y, Tang X, Hu X, Wu W, Ping Q.
    BMC Bioinformatics; 2017 Dec 01; 18(Suppl 13):470. PubMed ID: 29219067
    [Abstract] [Full Text] [Related]

  • 15. A new method for the discovery of essential proteins.
    Zhang X, Xu J, Xiao WX.
    PLoS One; 2013 Dec 01; 8(3):e58763. PubMed ID: 23555595
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Identifying essential proteins from active PPI networks constructed with dynamic gene expression.
    Xiao Q, Wang J, Peng X, Wu FX, Pan Y.
    BMC Genomics; 2015 Dec 01; 16 Suppl 3(Suppl 3):S1. PubMed ID: 25707432
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.