These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


322 related items for PubMed ID: 26369438

  • 1. Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum.
    Papanek B, Biswas R, Rydzak T, Guss AM.
    Metab Eng; 2015 Nov; 32():49-54. PubMed ID: 26369438
    [Abstract] [Full Text] [Related]

  • 2. Transcriptomic and proteomic changes from medium supplementation and strain evolution in high-yielding Clostridium thermocellum strains.
    Papanek B, O'Dell KB, Manga P, Giannone RJ, Klingeman DM, Hettich RL, Brown SD, Guss AM.
    J Ind Microbiol Biotechnol; 2018 Nov; 45(11):1007-1015. PubMed ID: 30187243
    [Abstract] [Full Text] [Related]

  • 3. Anaerobic microplate assay for direct microbial conversion of switchgrass and Avicel using Clostridium thermocellum.
    Oguntimein GB, Rodriguez M, Dumitrache A, Shollenberger T, Decker SR, Davison BH, Brown SD.
    Biotechnol Lett; 2018 Feb; 40(2):303-308. PubMed ID: 29124514
    [Abstract] [Full Text] [Related]

  • 4. Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum.
    Biswas R, Prabhu S, Lynd LR, Guss AM.
    PLoS One; 2014 Feb; 9(2):e86389. PubMed ID: 24516531
    [Abstract] [Full Text] [Related]

  • 5. Elimination of formate production in Clostridium thermocellum.
    Rydzak T, Lynd LR, Guss AM.
    J Ind Microbiol Biotechnol; 2015 Sep; 42(9):1263-72. PubMed ID: 26162629
    [Abstract] [Full Text] [Related]

  • 6. Characterization of Clostridium thermocellum strains with disrupted fermentation end-product pathways.
    van der Veen D, Lo J, Brown SD, Johnson CM, Tschaplinski TJ, Martin M, Engle NL, van den Berg RA, Argyros AD, Caiazza NC, Guss AM, Lynd LR.
    J Ind Microbiol Biotechnol; 2013 Jul; 40(7):725-34. PubMed ID: 23645383
    [Abstract] [Full Text] [Related]

  • 7. Elucidating central metabolic redox obstacles hindering ethanol production in Clostridium thermocellum.
    Thompson RA, Layton DS, Guss AM, Olson DG, Lynd LR, Trinh CT.
    Metab Eng; 2015 Nov; 32():207-219. PubMed ID: 26497628
    [Abstract] [Full Text] [Related]

  • 8. Enhanced cellulosic ethanol production via consolidated bioprocessing by Clostridium thermocellum ATCC 31924☆.
    Singh N, Mathur AS, Gupta RP, Barrow CJ, Tuli D, Puri M.
    Bioresour Technol; 2018 Feb; 250():860-867. PubMed ID: 30001594
    [Abstract] [Full Text] [Related]

  • 9. Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis.
    Raman B, Pan C, Hurst GB, Rodriguez M, McKeown CK, Lankford PK, Samatova NF, Mielenz JR.
    PLoS One; 2009 Feb; 4(4):e5271. PubMed ID: 19384422
    [Abstract] [Full Text] [Related]

  • 10. High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes.
    Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, Foden JM, Miller BB, Lynd LR, Hogsett DA, Caiazza NC.
    Appl Environ Microbiol; 2011 Dec; 77(23):8288-94. PubMed ID: 21965408
    [Abstract] [Full Text] [Related]

  • 11. Deletion of Type I glutamine synthetase deregulates nitrogen metabolism and increases ethanol production in Clostridium thermocellum.
    Rydzak T, Garcia D, Stevenson DM, Sladek M, Klingeman DM, Holwerda EK, Amador-Noguez D, Brown SD, Guss AM.
    Metab Eng; 2017 May; 41():182-191. PubMed ID: 28400329
    [Abstract] [Full Text] [Related]

  • 12. Enhanced ethanol formation by Clostridium thermocellum via pyruvate decarboxylase.
    Tian L, Perot SJ, Hon S, Zhou J, Liang X, Bouvier JT, Guss AM, Olson DG, Lynd LR.
    Microb Cell Fact; 2017 Oct 04; 16(1):171. PubMed ID: 28978312
    [Abstract] [Full Text] [Related]

  • 13. Clostridium thermocellum: A microbial platform for high-value chemical production from lignocellulose.
    Mazzoli R, Olson DG.
    Adv Appl Microbiol; 2020 Oct 04; 113():111-161. PubMed ID: 32948265
    [Abstract] [Full Text] [Related]

  • 14. Engineering the cellulolytic bacterium, Clostridium thermocellum, to co-utilize hemicellulose.
    Chou KJ, Croft T, Hebdon SD, Magnusson LR, Xiong W, Reyes LH, Chen X, Miller EJ, Riley DM, Dupuis S, Laramore KA, Keller LM, Winkelman D, Maness PC.
    Metab Eng; 2024 May 04; 83():193-205. PubMed ID: 38631458
    [Abstract] [Full Text] [Related]

  • 15. Nitrogen and sulfur requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on cellulosic substrates in minimal nutrient media.
    Kridelbaugh DM, Nelson J, Engle NL, Tschaplinski TJ, Graham DE.
    Bioresour Technol; 2013 Feb 04; 130():125-35. PubMed ID: 23306120
    [Abstract] [Full Text] [Related]

  • 16. Engineering cellulolytic bacterium Clostridium thermocellum to co-ferment cellulose- and hemicellulose-derived sugars simultaneously.
    Xiong W, Reyes LH, Michener WE, Maness PC, Chou KJ.
    Biotechnol Bioeng; 2018 Jul 04; 115(7):1755-1763. PubMed ID: 29537062
    [Abstract] [Full Text] [Related]

  • 17. Consolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellum.
    Lin PP, Mi L, Morioka AH, Yoshino KM, Konishi S, Xu SC, Papanek BA, Riley LA, Guss AM, Liao JC.
    Metab Eng; 2015 Sep 04; 31():44-52. PubMed ID: 26170002
    [Abstract] [Full Text] [Related]

  • 18. Ethanol tolerance of Clostridium thermocellum: the role of chaotropicity, temperature and pathway thermodynamics on growth and fermentative capacity.
    Kuil T, Yayo J, Pechan J, Küchler J, van Maris AJA.
    Microb Cell Fact; 2022 Dec 25; 21(1):273. PubMed ID: 36567317
    [Abstract] [Full Text] [Related]

  • 19. Adaptive evolution of Clostridium thermocellum ATCC 27405 on alternate carbon sources leads to altered fermentation profiles.
    Daley SR, Kirby S, Sparling R.
    Can J Microbiol; 2024 Sep 01; 70(9):370-383. PubMed ID: 38832648
    [Abstract] [Full Text] [Related]

  • 20. Overflow metabolism and growth cessation in Clostridium thermocellum DSM1313 during high cellulose loading fermentations.
    Thompson RA, Trinh CT.
    Biotechnol Bioeng; 2017 Nov 01; 114(11):2592-2604. PubMed ID: 28671264
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.