These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
322 related items for PubMed ID: 26369438
1. Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum. Papanek B, Biswas R, Rydzak T, Guss AM. Metab Eng; 2015 Nov; 32():49-54. PubMed ID: 26369438 [Abstract] [Full Text] [Related]
2. Transcriptomic and proteomic changes from medium supplementation and strain evolution in high-yielding Clostridium thermocellum strains. Papanek B, O'Dell KB, Manga P, Giannone RJ, Klingeman DM, Hettich RL, Brown SD, Guss AM. J Ind Microbiol Biotechnol; 2018 Nov; 45(11):1007-1015. PubMed ID: 30187243 [Abstract] [Full Text] [Related]
3. Anaerobic microplate assay for direct microbial conversion of switchgrass and Avicel using Clostridium thermocellum. Oguntimein GB, Rodriguez M, Dumitrache A, Shollenberger T, Decker SR, Davison BH, Brown SD. Biotechnol Lett; 2018 Feb; 40(2):303-308. PubMed ID: 29124514 [Abstract] [Full Text] [Related]
4. Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum. Biswas R, Prabhu S, Lynd LR, Guss AM. PLoS One; 2014 Feb; 9(2):e86389. PubMed ID: 24516531 [Abstract] [Full Text] [Related]
5. Elimination of formate production in Clostridium thermocellum. Rydzak T, Lynd LR, Guss AM. J Ind Microbiol Biotechnol; 2015 Sep; 42(9):1263-72. PubMed ID: 26162629 [Abstract] [Full Text] [Related]
6. Characterization of Clostridium thermocellum strains with disrupted fermentation end-product pathways. van der Veen D, Lo J, Brown SD, Johnson CM, Tschaplinski TJ, Martin M, Engle NL, van den Berg RA, Argyros AD, Caiazza NC, Guss AM, Lynd LR. J Ind Microbiol Biotechnol; 2013 Jul; 40(7):725-34. PubMed ID: 23645383 [Abstract] [Full Text] [Related]
13. Clostridium thermocellum: A microbial platform for high-value chemical production from lignocellulose. Mazzoli R, Olson DG. Adv Appl Microbiol; 2020 Oct 04; 113():111-161. PubMed ID: 32948265 [Abstract] [Full Text] [Related]
15. Nitrogen and sulfur requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on cellulosic substrates in minimal nutrient media. Kridelbaugh DM, Nelson J, Engle NL, Tschaplinski TJ, Graham DE. Bioresour Technol; 2013 Feb 04; 130():125-35. PubMed ID: 23306120 [Abstract] [Full Text] [Related]
17. Consolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellum. Lin PP, Mi L, Morioka AH, Yoshino KM, Konishi S, Xu SC, Papanek BA, Riley LA, Guss AM, Liao JC. Metab Eng; 2015 Sep 04; 31():44-52. PubMed ID: 26170002 [Abstract] [Full Text] [Related]
18. Ethanol tolerance of Clostridium thermocellum: the role of chaotropicity, temperature and pathway thermodynamics on growth and fermentative capacity. Kuil T, Yayo J, Pechan J, Küchler J, van Maris AJA. Microb Cell Fact; 2022 Dec 25; 21(1):273. PubMed ID: 36567317 [Abstract] [Full Text] [Related]
19. Adaptive evolution of Clostridium thermocellum ATCC 27405 on alternate carbon sources leads to altered fermentation profiles. Daley SR, Kirby S, Sparling R. Can J Microbiol; 2024 Sep 01; 70(9):370-383. PubMed ID: 38832648 [Abstract] [Full Text] [Related]
20. Overflow metabolism and growth cessation in Clostridium thermocellum DSM1313 during high cellulose loading fermentations. Thompson RA, Trinh CT. Biotechnol Bioeng; 2017 Nov 01; 114(11):2592-2604. PubMed ID: 28671264 [Abstract] [Full Text] [Related] Page: [Next] [New Search]