These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
480 related items for PubMed ID: 26371171
1. Central-peripheral neural network interactions evoked by vagus nerve stimulation: functional consequences on control of cardiac function. Ardell JL, Rajendran PS, Nier HA, KenKnight BH, Armour JA. Am J Physiol Heart Circ Physiol; 2015 Nov 15; 309(10):H1740-52. PubMed ID: 26371171 [Abstract] [Full Text] [Related]
2. Vagal nerve stimulation activates vagal afferent fibers that reduce cardiac efferent parasympathetic effects. Yamakawa K, Rajendran PS, Takamiya T, Yagishita D, So EL, Mahajan A, Shivkumar K, Vaseghi M. Am J Physiol Heart Circ Physiol; 2015 Nov 15; 309(9):H1579-90. PubMed ID: 26371172 [Abstract] [Full Text] [Related]
3. Defining the neural fulcrum for chronic vagus nerve stimulation: implications for integrated cardiac control. Ardell JL, Nier H, Hammer M, Southerland EM, Ardell CL, Beaumont E, KenKnight BH, Armour JA. J Physiol; 2017 Nov 15; 595(22):6887-6903. PubMed ID: 28862330 [Abstract] [Full Text] [Related]
4. Interactions within the intrinsic cardiac nervous system contribute to chronotropic regulation. Randall DC, Brown DR, McGuirt AS, Thompson GW, Armour JA, Ardell JL. Am J Physiol Regul Integr Comp Physiol; 2003 Nov 15; 285(5):R1066-75. PubMed ID: 12842863 [Abstract] [Full Text] [Related]
5. Vagus nerve stimulation exerts cardioprotection against myocardial ischemia/reperfusion injury predominantly through its efferent vagal fibers. Nuntaphum W, Pongkan W, Wongjaikam S, Thummasorn S, Tanajak P, Khamseekaew J, Intachai K, Chattipakorn SC, Chattipakorn N, Shinlapawittayatorn K. Basic Res Cardiol; 2018 May 09; 113(4):22. PubMed ID: 29744667 [Abstract] [Full Text] [Related]
6. Control of reciprocal and non-reciprocal action of vagal and sympathetic efferents: study of centrally induced reactions. Koizumi K, Kollai M. J Auton Nerv Syst; 1981 Apr 09; 3(2-4):483-501. PubMed ID: 6792258 [Abstract] [Full Text] [Related]
7. Contrasting effects of afferent and efferent vagal nerve stimulation on insulin secretion and blood glucose regulation. Meyers EE, Kronemberger A, Lira V, Rahmouni K, Stauss HM. Physiol Rep; 2016 Feb 09; 4(4):. PubMed ID: 26884478 [Abstract] [Full Text] [Related]
8. Reflex circulatory changes due to the afferent stimulation of cat pericoronary nerve. Shimizu T, Peterson DF, Bishop VS. Am J Physiol; 1978 Dec 09; 235(6):H759-66. PubMed ID: 736163 [Abstract] [Full Text] [Related]
9. Vagus nerve stimulation-induced bradyarrhythmias in rats. Hotta H, Lazar J, Orman R, Koizumi K, Shiba K, Kamran H, Stewart M. Auton Neurosci; 2009 Dec 03; 151(2):98-105. PubMed ID: 19651541 [Abstract] [Full Text] [Related]
10. Autonomic interactions for control of atrial rate are maintained after SA nodal parasympathectomy. McGuirt AS, Schmacht DC, Ardell JL. Am J Physiol; 1997 Jun 03; 272(6 Pt 2):H2525-33. PubMed ID: 9227527 [Abstract] [Full Text] [Related]
11. Cervical vagus nerve stimulation augments spontaneous discharge in second- and higher-order sensory neurons in the rat nucleus of the solitary tract. Beaumont E, Campbell RP, Andresen MC, Scofield S, Singh K, Libbus I, KenKnight BH, Snyder L, Cantrell N. Am J Physiol Heart Circ Physiol; 2017 Aug 01; 313(2):H354-H367. PubMed ID: 28476920 [Abstract] [Full Text] [Related]
12. Acute effects of vagus nerve stimulation parameters on gastric motility assessed with magnetic resonance imaging. Lu KH, Cao J, Phillips R, Powley TL, Liu Z. Neurogastroenterol Motil; 2020 Jul 01; 32(7):e13853. PubMed ID: 32297404 [Abstract] [Full Text] [Related]
13. The effect of vagus nerve stimulation upon vulnerability of the canine ventricle: role of sympathetic-parasympathetic interactions. Kolman BS, Verrier RL, Lown B. Circulation; 1975 Oct 01; 52(4):578-85. PubMed ID: 239801 [Abstract] [Full Text] [Related]
14. Centers involved in the autonomic reflex reactions originating from stretching of the atria. Koizumi K, Nishino H, Brooks CM. Proc Natl Acad Sci U S A; 1977 May 01; 74(5):2177-81. PubMed ID: 266737 [Abstract] [Full Text] [Related]
15. Left cardiac vagotomy rapidly reduces contralateral cardiac vagal electrical activity in anesthetized Göttingen minipigs. Vallone F, Dushpanova A, Leali M, Strauss I, Agnesi F, Zinno C, Casieri V, Carrozzo A, Bernini F, Terlizzi D, Carpaneto J, Micera S, Lionetti V. Int J Cardiol; 2024 Jan 01; 394():131349. PubMed ID: 37689397 [Abstract] [Full Text] [Related]
16. The nature of the atrial receptors responsible for a reflex increase in activity in efferent cardiac sympathetic nerves. Linden RJ, Mary DA, Weatherill D. Q J Exp Physiol; 1982 Jan 01; 67(1):143-9. PubMed ID: 6281844 [Abstract] [Full Text] [Related]
17. Zebrafish heart as a model to study the integrative autonomic control of pacemaker function. Stoyek MR, Quinn TA, Croll RP, Smith FM. Am J Physiol Heart Circ Physiol; 2016 Sep 01; 311(3):H676-88. PubMed ID: 27342878 [Abstract] [Full Text] [Related]
18. Left atrial receptors in arterial baroreflex control of heart rate. Fahim M, Arndt JO. Jpn J Physiol; 1990 Sep 01; 40(1):33-55. PubMed ID: 2362383 [Abstract] [Full Text] [Related]
19. Continuous vagus nerve stimulation exerts beneficial effects on rats with experimentally induced Parkinson's disease: Evidence suggesting involvement of a vagal afferent pathway. Hosomoto K, Sasaki T, Yasuhara T, Kameda M, Sasada S, Kin I, Kuwahara K, Kawauchi S, Okazaki Y, Yabuno S, Sugahara C, Kawai K, Nagase T, Tanimoto S, Borlongan CV, Date I. Brain Stimul; 2023 Sep 01; 16(2):594-603. PubMed ID: 36914065 [Abstract] [Full Text] [Related]