These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


162 related items for PubMed ID: 2637243

  • 1. Inhibitory effect of paraquat on biotransformation of halothane in rabbit liver microsomes.
    Kawamoto M, Fujii K, Yuge O, Morio M.
    Hiroshima J Med Sci; 1989 Dec; 38(4):161-7. PubMed ID: 2637243
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. The in vitro metabolism of halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) by hepatic microsomal cytochrome P-450.
    Karashima D, Hirokata Y, Shigematsu A, Furukawa T.
    J Pharmacol Exp Ther; 1977 Nov; 203(2):409-16. PubMed ID: 909072
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Reductive metabolism of halothane by cytochrome P450 isoforms in rats and humans.
    Chow T, Imaoka S, Hiroi T, Funae Y.
    Res Commun Mol Pathol Pharmacol; 1996 Sep; 93(3):363-74. PubMed ID: 8896047
    [Abstract] [Full Text] [Related]

  • 7. Cytochrome P450 2E1 is the principal catalyst of human oxidative halothane metabolism in vitro.
    Spracklin DK, Hankins DC, Fisher JM, Thummel KE, Kharasch ED.
    J Pharmacol Exp Ther; 1997 Apr; 281(1):400-11. PubMed ID: 9103523
    [Abstract] [Full Text] [Related]

  • 8. Microsomal cytochrome P450 dependent oxidation of N-hydroxyguanidines, amidoximes, and ketoximes: mechanism of the oxidative cleavage of their C=N(OH) bond with formation of nitrogen oxides.
    Jousserandot A, Boucher JL, Henry Y, Niklaus B, Clement B, Mansuy D.
    Biochemistry; 1998 Dec 08; 37(49):17179-91. PubMed ID: 9860831
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Metabolic activation of the halothane metabolite, [14C]2-chloro-1,1-difluoroethene, in hepatic microsomes.
    Baker MT, Bates JN.
    Drug Metab Dispos; 1988 Dec 08; 16(2):169-72. PubMed ID: 2898328
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Oxygen concentrations required for reductive defluorination of halothane by rat hepatic microsomes.
    Lind RC, Gandolfi AJ, Sipes IG, Brown BR, Waters SJ.
    Anesth Analg; 1986 Aug 08; 65(8):835-9. PubMed ID: 3729018
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Isoflurane acts as an inhibitor of oxidative dehalogenation while acting as an accelerator of reductive dehalogenation of halothane in guinea pig liver microsomes.
    Fujii K.
    Toxicology; 1995 Dec 15; 104(1-3):123-8. PubMed ID: 8560490
    [Abstract] [Full Text] [Related]

  • 19. Factors affecting the formation of chlorotrifluoroethane and chlorodifluoroethylene from halothane.
    Maiorino RM, Sipes IG, Gandolfi AJ, Brown BR, Lind RC.
    Anesthesiology; 1981 May 15; 54(5):383-9. PubMed ID: 7224207
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.