These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
248 related items for PubMed ID: 26374117
1. Two Essential Light Chains Regulate the MyoA Lever Arm To Promote Toxoplasma Gliding Motility. Williams MJ, Alonso H, Enciso M, Egarter S, Sheiner L, Meissner M, Striepen B, Smith BJ, Tonkin CJ. mBio; 2015 Sep 15; 6(5):e00845-15. PubMed ID: 26374117 [Abstract] [Full Text] [Related]
2. Blocking Palmitoylation of Toxoplasma gondii Myosin Light Chain 1 Disrupts Glideosome Composition but Has Little Impact on Parasite Motility. Rompikuntal PK, Kent RS, Foe IT, Deng B, Bogyo M, Ward GE. mSphere; 2021 May 19; 6(3):. PubMed ID: 34011689 [Abstract] [Full Text] [Related]
3. Structural role of essential light chains in the apicomplexan glideosome. Pazicky S, Dhamotharan K, Kaszuba K, Mertens HDT, Gilberger T, Svergun D, Kosinski J, Weininger U, Löw C. Commun Biol; 2020 Oct 13; 3(1):568. PubMed ID: 33051581 [Abstract] [Full Text] [Related]
4. Dissecting the molecular assembly of the Toxoplasma gondii MyoA motility complex. Powell CJ, Jenkins ML, Parker ML, Ramaswamy R, Kelsen A, Warshaw DM, Ward GE, Burke JE, Boulanger MJ. J Biol Chem; 2017 Nov 24; 292(47):19469-19477. PubMed ID: 28972141 [Abstract] [Full Text] [Related]
5. Compositional and expression analyses of the glideosome during the Plasmodium life cycle reveal an additional myosin light chain required for maximum motility. Green JL, Wall RJ, Vahokoski J, Yusuf NA, Ridzuan MAM, Stanway RR, Stock J, Knuepfer E, Brady D, Martin SR, Howell SA, Pires IP, Moon RW, Molloy JE, Kursula I, Tewari R, Holder AA. J Biol Chem; 2017 Oct 27; 292(43):17857-17875. PubMed ID: 28893907 [Abstract] [Full Text] [Related]
6. Plasticity between MyoC- and MyoA-glideosomes: an example of functional compensation in Toxoplasma gondii invasion. Frénal K, Marq JB, Jacot D, Polonais V, Soldati-Favre D. PLoS Pathog; 2014 Oct 27; 10(10):e1004504. PubMed ID: 25393004 [Abstract] [Full Text] [Related]
8. Functional dissection of the apicomplexan glideosome molecular architecture. Frénal K, Polonais V, Marq JB, Stratmann R, Limenitakis J, Soldati-Favre D. Cell Host Microbe; 2010 Oct 21; 8(4):343-57. PubMed ID: 20951968 [Abstract] [Full Text] [Related]
9. Surface attachment, promoted by the actomyosin system of Toxoplasma gondii is important for efficient gliding motility and invasion. Whitelaw JA, Latorre-Barragan F, Gras S, Pall GS, Leung JM, Heaslip A, Egarter S, Andenmatten N, Nelson SR, Warshaw DM, Ward GE, Meissner M. BMC Biol; 2017 Jan 18; 15(1):1. PubMed ID: 28100223 [Abstract] [Full Text] [Related]
10. [Research Advances on Gliding-associated Proteins of Toxoplasma gondii]. Li RH, Yin GR. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2016 Oct 18; 34(5):463-7. PubMed ID: 30130043 [Abstract] [Full Text] [Related]
11. Structural and mechanistic insights into the function of the unconventional class XIV myosin MyoA from Toxoplasma gondii. Powell CJ, Ramaswamy R, Kelsen A, Hamelin DJ, Warshaw DM, Bosch J, Burke JE, Ward GE, Boulanger MJ. Proc Natl Acad Sci U S A; 2018 Nov 06; 115(45):E10548-E10555. PubMed ID: 30348763 [Abstract] [Full Text] [Related]
12. The Conoid Associated Motor MyoH Is Indispensable for Toxoplasma gondii Entry and Exit from Host Cells. Graindorge A, Frénal K, Jacot D, Salamun J, Marq JB, Soldati-Favre D. PLoS Pathog; 2016 Jan 06; 12(1):e1005388. PubMed ID: 26760042 [Abstract] [Full Text] [Related]
13. [The glideosome, a unique machinery that assists the Apicomplexa in gliding into host cells]. Frénal K, Soldati-Favre D. Med Sci (Paris); 2013 May 06; 29(5):515-22. PubMed ID: 23732101 [Abstract] [Full Text] [Related]
14. Gliding motility in apicomplexan parasites. Heintzelman MB. Semin Cell Dev Biol; 2015 Oct 06; 46():135-42. PubMed ID: 26428297 [Abstract] [Full Text] [Related]
15. Myosin A tail domain interacting protein (MTIP) localizes to the inner membrane complex of Plasmodium sporozoites. Bergman LW, Kaiser K, Fujioka H, Coppens I, Daly TM, Fox S, Matuschewski K, Nussenzweig V, Kappe SH. J Cell Sci; 2003 Jan 01; 116(Pt 1):39-49. PubMed ID: 12456714 [Abstract] [Full Text] [Related]
16. Quantitative in vivo analyses reveal calcium-dependent phosphorylation sites and identifies a novel component of the Toxoplasma invasion motor complex. Nebl T, Prieto JH, Kapp E, Smith BJ, Williams MJ, Yates JR, Cowman AF, Tonkin CJ. PLoS Pathog; 2011 Sep 01; 7(9):e1002222. PubMed ID: 21980283 [Abstract] [Full Text] [Related]
17. Role of Toxoplasma gondii myosin A in powering parasite gliding and host cell invasion. Meissner M, Schlüter D, Soldati D. Science; 2002 Oct 25; 298(5594):837-40. PubMed ID: 12399593 [Abstract] [Full Text] [Related]
18. Identification of the membrane receptor of a class XIV myosin in Toxoplasma gondii. Gaskins E, Gilk S, DeVore N, Mann T, Ward G, Beckers C. J Cell Biol; 2004 May 10; 165(3):383-93. PubMed ID: 15123738 [Abstract] [Full Text] [Related]
19. A Toxoplasma gondii class XIV myosin, expressed in Sf9 cells with a parasite co-chaperone, requires two light chains for fast motility. Bookwalter CS, Kelsen A, Leung JM, Ward GE, Trybus KM. J Biol Chem; 2014 Oct 31; 289(44):30832-30841. PubMed ID: 25231988 [Abstract] [Full Text] [Related]
20. Reconstitution of the core of the malaria parasite glideosome with recombinant Plasmodium class XIV myosin A and Plasmodium actin. Bookwalter CS, Tay CL, McCrorie R, Previs MJ, Lu H, Krementsova EB, Fagnant PM, Baum J, Trybus KM. J Biol Chem; 2017 Nov 24; 292(47):19290-19303. PubMed ID: 28978649 [Abstract] [Full Text] [Related] Page: [Next] [New Search]