These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
589 related items for PubMed ID: 26374336
21. Junctin and triadin each activate skeletal ryanodine receptors but junctin alone mediates functional interactions with calsequestrin. Wei L, Gallant EM, Dulhunty AF, Beard NA. Int J Biochem Cell Biol; 2009 Nov; 41(11):2214-24. PubMed ID: 19398037 [Abstract] [Full Text] [Related]
22. Structure and molecular organisation of the sarcoplasmic reticulum of skeletal muscle fibers. Sorrentino V, Gerli R. Ital J Anat Embryol; 2003 Nov; 108(2):65-76. PubMed ID: 14503655 [Abstract] [Full Text] [Related]
23. Molecular aspects of the excitation-contraction coupling in skeletal muscle. Iino M. Jpn J Physiol; 1999 Aug; 49(4):325-33. PubMed ID: 10529492 [Abstract] [Full Text] [Related]
24. Junctional sarcoplasmic reticulum transmembrane proteins in the heart. Müller FU, Kirchhefer U, Begrow F, Reinke U, Neumann J, Schmitz W. Basic Res Cardiol; 2002 Aug; 97 Suppl 1():I52-5. PubMed ID: 12479235 [Abstract] [Full Text] [Related]
25. Association of triadin with the ryanodine receptor and calsequestrin in the lumen of the sarcoplasmic reticulum. Guo W, Campbell KP. J Biol Chem; 1995 Apr 21; 270(16):9027-30. PubMed ID: 7721813 [Abstract] [Full Text] [Related]
26. Multiple regions within junctin drive its interaction with calsequestrin-1 and its localization to triads in skeletal muscle. Rossi D, Lorenzini S, Pierantozzi E, Van Petegem F, Osamwonuyi Amadsun D, Sorrentino V. J Cell Sci; 2022 Jan 15; 135(2):. PubMed ID: 34913055 [Abstract] [Full Text] [Related]
27. Immunogold-labeled L-type calcium channels are clustered in the surface plasma membrane overlying junctional sarcoplasmic reticulum in guinea-pig myocytes-implications for excitation-contraction coupling in cardiac muscle. Gathercole DV, Colling DJ, Skepper JN, Takagishi Y, Levi AJ, Severs NJ. J Mol Cell Cardiol; 2000 Nov 15; 32(11):1981-94. PubMed ID: 11040103 [Abstract] [Full Text] [Related]
28. Deletion of small ankyrin 1 (sAnk1) isoforms results in structural and functional alterations in aging skeletal muscle fibers. Giacomello E, Quarta M, Paolini C, Squecco R, Fusco P, Toniolo L, Blaauw B, Formoso L, Rossi D, Birkenmeier C, Peters LL, Francini F, Protasi F, Reggiani C, Sorrentino V. Am J Physiol Cell Physiol; 2015 Jan 15; 308(2):C123-38. PubMed ID: 25354526 [Abstract] [Full Text] [Related]
29. Transport of the alpha subunit of the voltage gated L-type calcium channel through the sarcoplasmic reticulum occurs prior to localization to triads and requires the beta subunit but not Stac3 in skeletal muscles. Linsley JW, Hsu IU, Wang W, Kuwada JY. Traffic; 2017 Sep 15; 18(9):622-632. PubMed ID: 28697281 [Abstract] [Full Text] [Related]
30. Triadin/Junctin double null mouse reveals a differential role for Triadin and Junctin in anchoring CASQ to the jSR and regulating Ca(2+) homeostasis. Boncompagni S, Thomas M, Lopez JR, Allen PD, Yuan Q, Kranias EG, Franzini-Armstrong C, Perez CF. PLoS One; 2012 Sep 15; 7(7):e39962. PubMed ID: 22768324 [Abstract] [Full Text] [Related]
31. The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium. Györke I, Hester N, Jones LR, Györke S. Biophys J; 2004 Apr 15; 86(4):2121-8. PubMed ID: 15041652 [Abstract] [Full Text] [Related]
32. Calsequestrin, a key protein in striated muscle health and disease. Rossi D, Gamberucci A, Pierantozzi E, Amato C, Migliore L, Sorrentino V. J Muscle Res Cell Motil; 2021 Jun 15; 42(2):267-279. PubMed ID: 32488451 [Abstract] [Full Text] [Related]
33. New roles of calsequestrin and triadin in cardiac muscle. Knollmann BC. J Physiol; 2009 Jul 01; 587(Pt 13):3081-7. PubMed ID: 19451205 [Abstract] [Full Text] [Related]
34. Control of muscle ryanodine receptor calcium release channels by proteins in the sarcoplasmic reticulum lumen. Beard NA, Wei L, Dulhunty AF. Clin Exp Pharmacol Physiol; 2009 Mar 01; 36(3):340-5. PubMed ID: 19278523 [Abstract] [Full Text] [Related]
35. The sarcoplasmic reticulum: an organized patchwork of specialized domains. Rossi D, Barone V, Giacomello E, Cusimano V, Sorrentino V. Traffic; 2008 Jul 01; 9(7):1044-9. PubMed ID: 18266914 [Abstract] [Full Text] [Related]
36. Development of the excitation-contraction coupling apparatus in skeletal muscle: association of sarcoplasmic reticulum and transverse tubules with myofibrils. Flucher BE, Takekura H, Franzini-Armstrong C. Dev Biol; 1993 Nov 01; 160(1):135-47. PubMed ID: 8224530 [Abstract] [Full Text] [Related]
37. Dihydropyridine receptor-ryanodine receptor interactions in skeletal muscle excitation-contraction coupling. Meissner G, Lu X. Biosci Rep; 1995 Oct 01; 15(5):399-408. PubMed ID: 8825041 [Abstract] [Full Text] [Related]
38. Calsequestrin and the calcium release channel of skeletal and cardiac muscle. Beard NA, Laver DR, Dulhunty AF. Prog Biophys Mol Biol; 2004 May 01; 85(1):33-69. PubMed ID: 15050380 [Abstract] [Full Text] [Related]
39. Development of the excitation-contraction coupling machinery and its relation to myofibrillogenesis in human iPSC-derived skeletal myocytes. Lainé J, Skoglund G, Fournier E, Tabti N. Skelet Muscle; 2018 Jan 05; 8(1):1. PubMed ID: 29304851 [Abstract] [Full Text] [Related]
40. From excitation to intracellular Ca2+ movements in skeletal muscle: Basic aspects and related clinical disorders. Allard B. Neuromuscul Disord; 2018 May 05; 28(5):394-401. PubMed ID: 29627324 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]