These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


250 related items for PubMed ID: 26378011

  • 1. Simultaneous Bioconversion of Xylose and Glycerol to Xylonic Acid and 1,3-Dihydroxyacetone from the Mixture of Pre-Hydrolysates and Ethanol-Fermented Waste Liquid by Gluconobacter oxydans.
    Zhou X, Xu Y, Yu S.
    Appl Biochem Biotechnol; 2016 Jan; 178(1):1-8. PubMed ID: 26378011
    [Abstract] [Full Text] [Related]

  • 2. Improving the production yield and productivity of 1,3-dihydroxyacetone from glycerol fermentation using Gluconobacter oxydans NL71 in a compressed oxygen supply-sealed and stirred tank reactor (COS-SSTR).
    Zhou X, Zhou X, Xu Y, Yu S.
    Bioprocess Biosyst Eng; 2016 Aug; 39(8):1315-8. PubMed ID: 27021347
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Electrodialytic bioproduction of xylonic acid in a bioreactor of supplied-oxygen intensification by using immobilized whole-cell Gluconobacter oxydans as biocatalyst.
    Zhou X, Han J, Xu Y.
    Bioresour Technol; 2019 Jun; 282():378-383. PubMed ID: 30884457
    [Abstract] [Full Text] [Related]

  • 5. Production of 1,3-dihydroxyacetone from glycerol by Gluconobacter oxydans ZJB09112.
    Hu ZC, Liu ZQ, Zheng YG, Shen YC.
    J Microbiol Biotechnol; 2010 Feb; 20(2):340-5. PubMed ID: 20208438
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Screening of Gluconobacter oxydans in xylonic acid fermentation for tolerance of the inhibitors formed dilute acid pretreatment.
    Jiang W, Dai L, Tan X, Zhou X, Xu Y.
    Bioprocess Biosyst Eng; 2023 Apr; 46(4):589-597. PubMed ID: 36670301
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Production of Gluconobacter oxydans cells from low-cost culture medium for conversion of glycerol to dihydroxyacetone.
    Wei S, Song Q, Wei D.
    Prep Biochem Biotechnol; 2007 Apr; 37(2):113-21. PubMed ID: 17454822
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. A cost-practical cell-recycling process for xylonic acid bioproduction from acidic lignocellulosic hydrolysate with whole-cell catalysis of Gluconobacter oxydans.
    Han J, Hua X, Zhou X, Xu B, Wang H, Huang G, Xu Y.
    Bioresour Technol; 2021 Aug; 333():125157. PubMed ID: 33878501
    [Abstract] [Full Text] [Related]

  • 12. Optimization of 1,3-dihydroxyacetone production from crude glycerol by immobilized Gluconobacter oxydans MTCC 904.
    Dikshit PK, Moholkar VS.
    Bioresour Technol; 2016 Sep; 216():1058-65. PubMed ID: 26873288
    [Abstract] [Full Text] [Related]

  • 13. Disruption of the membrane-bound alcohol dehydrogenase-encoding gene improved glycerol use and dihydroxyacetone productivity in Gluconobacter oxydans.
    Habe H, Fukuoka T, Morita T, Kitamoto D, Yakushi T, Matsushita K, Sakaki K.
    Biosci Biotechnol Biochem; 2010 Sep; 74(7):1391-5. PubMed ID: 20622460
    [Abstract] [Full Text] [Related]

  • 14. Enhancement of 1,3-dihydroxyacetone production by a UV-induced mutant of Gluconobacter oxydans with DO control strategy.
    Hu ZC, Zheng YG.
    Appl Biochem Biotechnol; 2011 Nov; 165(5-6):1152-60. PubMed ID: 21833510
    [Abstract] [Full Text] [Related]

  • 15. A two-step bioprocessing strategy in pentonic acids production from lignocellulosic pre-hydrolysate.
    Zhou X, Huang L, Xu Y, Yu S.
    Bioprocess Biosyst Eng; 2017 Nov; 40(11):1581-1587. PubMed ID: 28721445
    [Abstract] [Full Text] [Related]

  • 16. Fermentative production of high titer gluconic and xylonic acids from corn stover feedstock by Gluconobacter oxydans and techno-economic analysis.
    Zhang H, Liu G, Zhang J, Bao J.
    Bioresour Technol; 2016 Nov; 219():123-131. PubMed ID: 27484668
    [Abstract] [Full Text] [Related]

  • 17. Enhancement of Gluconobacter oxydans Resistance to Lignocellulosic-Derived Inhibitors in Xylonic Acid Production by Overexpressing Thioredoxin.
    Shen Y, Zhou X, Xu Y.
    Appl Biochem Biotechnol; 2020 Jul; 191(3):1072-1083. PubMed ID: 31960365
    [Abstract] [Full Text] [Related]

  • 18. Efficient coproduction of gluconic acid and xylonic acid from lignocellulosic hydrolysate by Zn(II)-selective inhibition on whole-cell catalysis by Gluconobacter oxydans.
    Zhou X, Zhou X, Huang L, Cao R, Xu Y.
    Bioresour Technol; 2017 Nov; 243():855-859. PubMed ID: 28724257
    [Abstract] [Full Text] [Related]

  • 19. Repeated biotransformation of glycerol to 1,3-dihydroxyacetone by immobilized cells of Gluconobacter oxydans with glycerol- and urea-feeding strategy in a bubble column bioreactor.
    Hu ZC, Tian SY, Ruan LJ, Zheng YG.
    Bioresour Technol; 2017 Jun; 233():144-149. PubMed ID: 28279907
    [Abstract] [Full Text] [Related]

  • 20. The development of cement and concrete additive: based on xylonic acid derived via bioconversion of xylose.
    Chun BW, Dair B, Macuch PJ, Wiebe D, Porteneuve C, Jeknavorian A.
    Appl Biochem Biotechnol; 2006 Jun; 129-132():645-58. PubMed ID: 16915676
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.