These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


376 related items for PubMed ID: 26381181

  • 1. RNAi knockdown of fatty acid elongase1 alters fatty acid composition in Brassica napus.
    Shi J, Lang C, Wu X, Liu R, Zheng T, Zhang D, Chen J, Wu G.
    Biochem Biophys Res Commun; 2015 Oct 23; 466(3):518-22. PubMed ID: 26381181
    [Abstract] [Full Text] [Related]

  • 2. Depressed expression of FAE1 and FAD2 genes modifies fatty acid profiles and storage compounds accumulation in Brassica napus seeds.
    Shi J, Lang C, Wang F, Wu X, Liu R, Zheng T, Zhang D, Chen J, Wu G.
    Plant Sci; 2017 Oct 23; 263():177-182. PubMed ID: 28818373
    [Abstract] [Full Text] [Related]

  • 3. Simultaneous silencing of FAD2 and FAE1 genes affects both oleic acid and erucic acid contents in Brassica napus seeds.
    Peng Q, Hu Y, Wei R, Zhang Y, Guan C, Ruan Y, Liu C.
    Plant Cell Rep; 2010 Apr 23; 29(4):317-25. PubMed ID: 20130882
    [Abstract] [Full Text] [Related]

  • 4. CRISPR/Cas9-Mediated Gene Editing of BnFAD2 and BnFAE1 Modifies Fatty Acid Profiles in Brassica napus.
    Shi J, Ni X, Huang J, Fu Y, Wang T, Yu H, Zhang Y.
    Genes (Basel); 2022 Sep 20; 13(10):. PubMed ID: 36292566
    [Abstract] [Full Text] [Related]

  • 5. Development of ultra-high erucic acid oil in the industrial oil crop Crambe abyssinica.
    Li X, van Loo EN, Gruber J, Fan J, Guan R, Frentzen M, Stymne S, Zhu LH.
    Plant Biotechnol J; 2012 Sep 20; 10(7):862-70. PubMed ID: 22642539
    [Abstract] [Full Text] [Related]

  • 6. Increasing erucic acid content through combination of endogenous low polyunsaturated fatty acids alleles with Ld-LPAAT + Bn-fae1 transgenes in rapeseed (Brassica napus L.).
    Nath UK, Wilmer JA, Wallington EJ, Becker HC, Möllers C.
    Theor Appl Genet; 2009 Feb 20; 118(4):765-73. PubMed ID: 19050848
    [Abstract] [Full Text] [Related]

  • 7. Utility of the Arabidopsis FAE1 and yeast SLC1-1 genes for improvements in erucic acid and oil content in rapeseed.
    Katavic V, Friesen W, Barton DL, Gossen KK, Giblin EM, Luciw T, An J, Zou J, MacKenzie SL, Keller WA, Males D, Taylor DC.
    Biochem Soc Trans; 2000 Dec 20; 28(6):935-7. PubMed ID: 11171262
    [Abstract] [Full Text] [Related]

  • 8. Enhancing Erucic Acid and Wax Ester Production in Brassica carinata through Metabolic Engineering for Industrial Applications.
    Tesfaye M, Wang ES, Feyissa T, Herrfurth C, Haileselassie T, Kanagarajan S, Feussner I, Zhu LH.
    Int J Mol Sci; 2024 Jun 07; 25(12):. PubMed ID: 38928029
    [Abstract] [Full Text] [Related]

  • 9. Exploring genotypic variations for improved oil content and healthy fatty acids composition in rapeseed (Brassica napus L.).
    Ishaq M, Razi R, Khan SA.
    J Sci Food Agric; 2017 Apr 07; 97(6):1924-1930. PubMed ID: 27539751
    [Abstract] [Full Text] [Related]

  • 10. Piriformospora indica promotes growth, seed yield and quality of Brassica napus L.
    Su ZZ, Wang T, Shrivastava N, Chen YY, Liu X, Sun C, Yin Y, Gao QK, Lou BG.
    Microbiol Res; 2017 Jun 07; 199():29-39. PubMed ID: 28454707
    [Abstract] [Full Text] [Related]

  • 11. Identification of transcription factor BnHDG4-A08 as a novel candidate associated with the accumulation of oleic, linoleic, linolenic, and erucic acid in Brassica napus.
    Fu Y, Yao M, Qiu P, Song M, Ni X, Niu E, Shi J, Wang T, Zhang Y, Yu H, Qian L.
    Theor Appl Genet; 2024 Oct 01; 137(10):243. PubMed ID: 39352575
    [Abstract] [Full Text] [Related]

  • 12. Zero erucic acid trait of rapeseed (Brassica napus L.) results from a deletion of four base pairs in the fatty acid elongase 1 gene.
    Wu G, Wu Y, Xiao L, Li X, Lu C.
    Theor Appl Genet; 2008 Feb 01; 116(4):491-9. PubMed ID: 18075728
    [Abstract] [Full Text] [Related]

  • 13. Breeding response of transcript profiling in developing seeds of Brassica napus.
    Hu Y, Wu G, Cao Y, Wu Y, Xiao L, Li X, Lu C.
    BMC Mol Biol; 2009 May 24; 10():49. PubMed ID: 19463193
    [Abstract] [Full Text] [Related]

  • 14. An insight in the genetic control and interrelationship of some quality traits in Brassica napus.
    Ahmad S, Sadaqat HA, Tahir MH, Awan FS.
    Genet Mol Res; 2015 Dec 22; 14(4):17941-50. PubMed ID: 26782440
    [Abstract] [Full Text] [Related]

  • 15. Down-regulation of crambe fatty acid desaturase and elongase in Arabidopsis and crambe resulted in significantly increased oleic acid content in seed oil.
    Li X, Mei D, Liu Q, Fan J, Singh S, Green A, Zhou XR, Zhu LH.
    Plant Biotechnol J; 2016 Jan 22; 14(1):323-31. PubMed ID: 25998013
    [Abstract] [Full Text] [Related]

  • 16. Analysis of QTLs for erucic acid and oil content in seeds on A8 chromosome and the linkage drag between the alleles for the two traits in Brassica napus.
    Cao Z, Tian F, Wang N, Jiang C, Lin B, Xia W, Shi J, Long Y, Zhang C, Meng J.
    J Genet Genomics; 2010 Apr 22; 37(4):231-40. PubMed ID: 20439099
    [Abstract] [Full Text] [Related]

  • 17. The CCCH-type transcription factor BnZFP1 is a positive regulator to control oleic acid levels through the expression of diacylglycerol O-acyltransferase 1 gene in Brassica napus.
    Zhang H, Zhang Z, Xiong T, Xiong X, Wu X, Guan C, Xiao G.
    Plant Physiol Biochem; 2018 Nov 22; 132():633-640. PubMed ID: 30340175
    [Abstract] [Full Text] [Related]

  • 18. Altered seed oil and glucosinolate levels in transgenic plants overexpressing the Brassica napus SHOOTMERISTEMLESS gene.
    Elhiti M, Yang C, Chan A, Durnin DC, Belmonte MF, Ayele BT, Tahir M, Stasolla C.
    J Exp Bot; 2012 Jul 22; 63(12):4447-61. PubMed ID: 22563121
    [Abstract] [Full Text] [Related]

  • 19. Genetic and molecular approaches to improve nutritional value of Brassica napus L. seed.
    Nesi N, Delourme R, Brégeon M, Falentin C, Renard M.
    C R Biol; 2008 Oct 22; 331(10):763-71. PubMed ID: 18926490
    [Abstract] [Full Text] [Related]

  • 20. Cloning and functional characterization of the fatty acid elongase 1 (FAE1) gene from high erucic Crambe abyssinica cv. Prophet.
    Mietkiewska E, Brost JM, Giblin EM, Barton DL, Taylor DC.
    Plant Biotechnol J; 2007 Sep 22; 5(5):636-45. PubMed ID: 17565584
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.