These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


305 related items for PubMed ID: 26384570

  • 1. Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae.
    Song JY, Park JS, Kang CD, Cho HY, Yang D, Lee S, Cho KM.
    Metab Eng; 2016 May; 35():38-45. PubMed ID: 26384570
    [Abstract] [Full Text] [Related]

  • 2. Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis.
    Kozak BU, van Rossum HM, Benjamin KR, Wu L, Daran JM, Pronk JT, van Maris AJ.
    Metab Eng; 2014 Jan; 21():46-59. PubMed ID: 24269999
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism.
    Krivoruchko A, Serrano-Amatriain C, Chen Y, Siewers V, Nielsen J.
    J Ind Microbiol Biotechnol; 2013 Sep; 40(9):1051-6. PubMed ID: 23760499
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Metabolic Engineering and Adaptive Evolution for Efficient Production of l-Lactic Acid in Saccharomyces cerevisiae.
    Zhu P, Luo R, Li Y, Chen X.
    Microbiol Spectr; 2022 Dec 21; 10(6):e0227722. PubMed ID: 36354322
    [Abstract] [Full Text] [Related]

  • 11. Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast.
    Zhang GC, Kong II, Wei N, Peng D, Turner TL, Sung BH, Sohn JH, Jin YS.
    Biotechnol Bioeng; 2016 Dec 21; 113(12):2587-2596. PubMed ID: 27240865
    [Abstract] [Full Text] [Related]

  • 12. Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L-lactic acid.
    Lee JY, Kang CD, Lee SH, Park YK, Cho KM.
    Biotechnol Bioeng; 2015 Apr 21; 112(4):751-8. PubMed ID: 25363674
    [Abstract] [Full Text] [Related]

  • 13. Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: Pathway stoichiometry, free-energy conservation and redox-cofactor balancing.
    van Rossum HM, Kozak BU, Pronk JT, van Maris AJA.
    Metab Eng; 2016 Jul 21; 36():99-115. PubMed ID: 27016336
    [Abstract] [Full Text] [Related]

  • 14. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor.
    Guadalupe Medina V, Almering MJ, van Maris AJ, Pronk JT.
    Appl Environ Microbiol; 2010 Jan 21; 76(1):190-5. PubMed ID: 19915031
    [Abstract] [Full Text] [Related]

  • 15. Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae.
    Kozak BU, van Rossum HM, Luttik MA, Akeroyd M, Benjamin KR, Wu L, de Vries S, Daran JM, Pronk JT, van Maris AJ.
    mBio; 2014 Oct 21; 5(5):e01696-14. PubMed ID: 25336454
    [Abstract] [Full Text] [Related]

  • 16. Improvement of d-Lactic Acid Production in Saccharomyces cerevisiae Under Acidic Conditions by Evolutionary and Rational Metabolic Engineering.
    Baek SH, Kwon EY, Bae SJ, Cho BR, Kim SY, Hahn JS.
    Biotechnol J; 2017 Oct 21; 12(10):. PubMed ID: 28731533
    [Abstract] [Full Text] [Related]

  • 17. Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae.
    Baek SH, Kwon EY, Kim YH, Hahn JS.
    Appl Microbiol Biotechnol; 2016 Mar 21; 100(6):2737-48. PubMed ID: 26596574
    [Abstract] [Full Text] [Related]

  • 18. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids.
    Shiba Y, Paradise EM, Kirby J, Ro DK, Keasling JD.
    Metab Eng; 2007 Mar 21; 9(2):160-8. PubMed ID: 17196416
    [Abstract] [Full Text] [Related]

  • 19. Functional Reconstitution of a Pyruvate Dehydrogenase in the Cytosol of Saccharomyces cerevisiae through Lipoylation Machinery Engineering.
    Lian J, Zhao H.
    ACS Synth Biol; 2016 Jul 15; 5(7):689-97. PubMed ID: 26991359
    [Abstract] [Full Text] [Related]

  • 20. Increasing n-butanol production with Saccharomyces cerevisiae by optimizing acetyl-CoA synthesis, NADH levels and trans-2-enoyl-CoA reductase expression.
    Schadeweg V, Boles E.
    Biotechnol Biofuels; 2016 Jul 15; 9():257. PubMed ID: 27924150
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.