These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


814 related items for PubMed ID: 26389562

  • 1. Dynamics of Intraband and Interband Auger Processes in Colloidal Core-Shell Quantum Dots.
    Rabouw FT, Vaxenburg R, Bakulin AA, van Dijk-Moes RJ, Bakker HJ, Rodina A, Lifshitz E, L Efros A, Koenderink AF, Vanmaekelbergh D.
    ACS Nano; 2015 Oct 27; 9(10):10366-76. PubMed ID: 26389562
    [Abstract] [Full Text] [Related]

  • 2. Auger recombination of biexcitons and negative and positive trions in individual quantum dots.
    Park YS, Bae WK, Pietryga JM, Klimov VI.
    ACS Nano; 2014 Jul 22; 8(7):7288-96. PubMed ID: 24909861
    [Abstract] [Full Text] [Related]

  • 3. Controlled alloying of the core-shell interface in CdSe/CdS quantum dots for suppression of Auger recombination.
    Bae WK, Padilha LA, Park YS, McDaniel H, Robel I, Pietryga JM, Klimov VI.
    ACS Nano; 2013 Apr 23; 7(4):3411-9. PubMed ID: 23521208
    [Abstract] [Full Text] [Related]

  • 4. Enhancing Dielectric Screening for Auger Suppression in CdSe/CdS Quantum Dots by Epitaxial Growth of ZnS Shell.
    Hou X, Qin H, Peng X.
    Nano Lett; 2021 May 12; 21(9):3871-3878. PubMed ID: 33938759
    [Abstract] [Full Text] [Related]

  • 5. Effects of interface-potential smoothness and wavefunction delocalization on Auger recombination in colloidal CdSe-based core/shell quantum dots.
    Hou X, Li Y, Qin H, Peng X.
    J Chem Phys; 2019 Dec 21; 151(23):234703. PubMed ID: 31864257
    [Abstract] [Full Text] [Related]

  • 6. Effect of Auger Recombination on Lasing in Heterostructured Quantum Dots with Engineered Core/Shell Interfaces.
    Park YS, Bae WK, Baker T, Lim J, Klimov VI.
    Nano Lett; 2015 Nov 11; 15(11):7319-28. PubMed ID: 26397312
    [Abstract] [Full Text] [Related]

  • 7. Auger Recombination Lifetime Scaling for Type I and Quasi-Type II Core/Shell Quantum Dots.
    Philbin JP, Rabani E.
    J Phys Chem Lett; 2020 Jul 02; 11(13):5132-5138. PubMed ID: 32513003
    [Abstract] [Full Text] [Related]

  • 8. Small bright charged colloidal quantum dots.
    Qin W, Liu H, Guyot-Sionnest P.
    ACS Nano; 2014 Jan 28; 8(1):283-91. PubMed ID: 24350673
    [Abstract] [Full Text] [Related]

  • 9. Deciphering hot- and multi-exciton dynamics in core-shell QDs by 2D electronic spectroscopies.
    Righetto M, Bolzonello L, Volpato A, Amoruso G, Panniello A, Fanizza E, Striccoli M, Collini E.
    Phys Chem Chem Phys; 2018 Jul 11; 20(27):18176-18183. PubMed ID: 29961782
    [Abstract] [Full Text] [Related]

  • 10. Superposition Principle in Auger Recombination of Charged and Neutral Multicarrier States in Semiconductor Quantum Dots.
    Wu K, Lim J, Klimov VI.
    ACS Nano; 2017 Aug 22; 11(8):8437-8447. PubMed ID: 28723072
    [Abstract] [Full Text] [Related]

  • 11. Biexciton Auger Recombination in CdSe/CdS Core/Shell Semiconductor Nanocrystals.
    Vaxenburg R, Rodina A, Lifshitz E, L Efros A.
    Nano Lett; 2016 Apr 13; 16(4):2503-11. PubMed ID: 26950398
    [Abstract] [Full Text] [Related]

  • 12. Effect of the core/shell interface on auger recombination evaluated by single-quantum-dot spectroscopy.
    Park YS, Bae WK, Padilha LA, Pietryga JM, Klimov VI.
    Nano Lett; 2014 Feb 12; 14(2):396-402. PubMed ID: 24397307
    [Abstract] [Full Text] [Related]

  • 13. Auger Suppression in n-Type HgSe Colloidal Quantum Dots.
    Melnychuk C, Guyot-Sionnest P.
    ACS Nano; 2019 Sep 24; 13(9):10512-10519. PubMed ID: 31436950
    [Abstract] [Full Text] [Related]

  • 14. The role of ligands in determining the exciton relaxation dynamics in semiconductor quantum dots.
    Peterson MD, Cass LC, Harris RD, Edme K, Sung K, Weiss EA.
    Annu Rev Phys Chem; 2014 Sep 24; 65():317-39. PubMed ID: 24364916
    [Abstract] [Full Text] [Related]

  • 15. Photoluminescence Blinking and Biexciton Auger Recombination in Single Colloidal Quantum Dots with Sharp and Smooth Core/Shell Interfaces.
    Guo W, Tang J, Zhang G, Li B, Yang C, Chen R, Qin C, Hu J, Zhong H, Xiao L, Jia S.
    J Phys Chem Lett; 2021 Jan 14; 12(1):405-412. PubMed ID: 33356280
    [Abstract] [Full Text] [Related]

  • 16. Auger-Limited Carrier Recombination and Relaxation in CdSe Colloidal Quantum Wells.
    Baghani E, O'Leary SK, Fedin I, Talapin DV, Pelton M.
    J Phys Chem Lett; 2015 Mar 19; 6(6):1032-6. PubMed ID: 26262865
    [Abstract] [Full Text] [Related]

  • 17. Gradient CdSe/CdS Quantum Dots with Room Temperature Biexciton Unity Quantum Yield.
    Nasilowski M, Spinicelli P, Patriarche G, Dubertret B.
    Nano Lett; 2015 Jun 10; 15(6):3953-8. PubMed ID: 25990468
    [Abstract] [Full Text] [Related]

  • 18. Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots.
    Zhu H, Song N, Lian T.
    J Am Chem Soc; 2011 Jun 08; 133(22):8762-71. PubMed ID: 21534569
    [Abstract] [Full Text] [Related]

  • 19. Unraveling the exciton quenching mechanism of quantum dots on antimony-doped SnO₂ films by transient absorption and single dot fluorescence spectroscopy.
    Song N, Zhu H, Liu Z, Huang Z, Wu D, Lian T.
    ACS Nano; 2013 Feb 26; 7(2):1599-608. PubMed ID: 23281781
    [Abstract] [Full Text] [Related]

  • 20. Spectral and Dynamical Properties of Single Excitons, Biexcitons, and Trions in Cesium-Lead-Halide Perovskite Quantum Dots.
    Makarov NS, Guo S, Isaienko O, Liu W, Robel I, Klimov VI.
    Nano Lett; 2016 Apr 13; 16(4):2349-62. PubMed ID: 26882294
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 41.