These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
720 related items for PubMed ID: 26391138
1. Thermal magnetic resonance: physics considerations and electromagnetic field simulations up to 23.5 Tesla (1GHz). Winter L, Oezerdem C, Hoffmann W, van de Lindt T, Periquito J, Ji Y, Ghadjar P, Budach V, Wust P, Niendorf T. Radiat Oncol; 2015 Sep 22; 10():201. PubMed ID: 26391138 [Abstract] [Full Text] [Related]
2. Design and evaluation of a hybrid radiofrequency applicator for magnetic resonance imaging and RF induced hyperthermia: electromagnetic field simulations up to 14.0 Tesla and proof-of-concept at 7.0 Tesla. Winter L, Özerdem C, Hoffmann W, Santoro D, Müller A, Waiczies H, Seemann R, Graessl A, Wust P, Niendorf T. PLoS One; 2013 Sep 22; 8(4):e61661. PubMed ID: 23613896 [Abstract] [Full Text] [Related]
3. Radiofrequency applicator concepts for thermal magnetic resonance of brain tumors at 297 MHz (7.0 Tesla). Oberacker E, Kuehne A, Oezerdem C, Nadobny J, Weihrauch M, Beck M, Zschaeck S, Diesch C, Eigentler TW, Waiczies H, Ghadjar P, Wust P, Winter L, Niendorf T. Int J Hyperthermia; 2020 Sep 22; 37(1):549-563. PubMed ID: 32484019 [Abstract] [Full Text] [Related]
4. A practical approach to thermography in a hyperthermia/magnetic resonance hybrid system: validation in a heterogeneous phantom. Gellermann J, Wlodarczyk W, Ganter H, Nadobny J, Fähling H, Seebass M, Felix R, Wust P. Int J Radiat Oncol Biol Phys; 2005 Jan 01; 61(1):267-77. PubMed ID: 15629620 [Abstract] [Full Text] [Related]
5. Wideband Self-Grounded Bow-Tie Antenna for Thermal MR. Eigentler TW, Winter L, Han H, Oberacker E, Kuehne A, Waiczies H, Schmitter S, Boehmert L, Prinz C, Trefna HD, Niendorf T. NMR Biomed; 2020 May 01; 33(5):e4274. PubMed ID: 32078208 [Abstract] [Full Text] [Related]
6. Experimental validation of hyperthermia SAR treatment planning using MR B1+ imaging. Van den Berg CA, Bartels LW, De Leeuw AA, Lagendijk JJ, Van de Kamer JB. Phys Med Biol; 2004 Nov 21; 49(22):5029-42. PubMed ID: 15609556 [Abstract] [Full Text] [Related]
7. Exploration of MR-guided head and neck hyperthermia by phantom testing of a modified prototype applicator for use with proton resonance frequency shift thermometry. Numan WC, Hofstetter LW, Kotek G, Bakker JF, Fiveland EW, Houston GC, Kudielka G, Yeo DT, Paulides MM. Int J Hyperthermia; 2014 May 21; 30(3):184-91. PubMed ID: 24773040 [Abstract] [Full Text] [Related]
8. On the RF heating of coronary stents at 7.0 Tesla MRI. Winter L, Oberacker E, Özerdem C, Ji Y, von Knobelsdorff-Brenkenhoff F, Weidemann G, Ittermann B, Seifert F, Niendorf T. Magn Reson Med; 2015 Oct 21; 74(4):999-1010. PubMed ID: 25293952 [Abstract] [Full Text] [Related]
9. Improved hyperthermia treatment control using SAR/temperature simulation and PRFS magnetic resonance thermal imaging. Li Z, Vogel M, Maccarini PF, Stakhursky V, Soher BJ, Craciunescu OI, Das S, Arabe OA, Joines WT, Stauffer PR. Int J Hyperthermia; 2011 Oct 21; 27(1):86-99. PubMed ID: 21070140 [Abstract] [Full Text] [Related]
10. Simultaneous radiofrequency (RF) heating and magnetic resonance (MR) thermal mapping using an intravascular MR imaging/RF heating system. Qiu B, El-Sharkawy AM, Paliwal V, Karmarkar P, Gao F, Atalar E, Yang X. Magn Reson Med; 2005 Jul 21; 54(1):226-30. PubMed ID: 15968681 [Abstract] [Full Text] [Related]
11. An integrated platform for small-animal hyperthermia investigations under ultra-high-field MRI guidance. Curto S, Faridi P, Shrestha TB, Pyle M, Maurmann L, Troyer D, Bossmann SH, Prakash P. Int J Hyperthermia; 2018 Jun 21; 34(4):341-351. PubMed ID: 28728442 [Abstract] [Full Text] [Related]
12. Nanoparticle-mediated radiofrequency capacitive hyperthermia: A phantom study with magnetic resonance thermometry. Kim KS, Lee SY. Int J Hyperthermia; 2015 Jun 21; 31(8):831-9. PubMed ID: 26555005 [Abstract] [Full Text] [Related]
13. Laboratory prototype for experimental validation of MR-guided radiofrequency head and neck hyperthermia. Paulides MM, Bakker JF, Hofstetter LW, Numan WC, Pellicer R, Fiveland EW, Tarasek M, Houston GC, van Rhoon GC, Yeo DT, Kotek G. Phys Med Biol; 2014 May 07; 59(9):2139-54. PubMed ID: 24699230 [Abstract] [Full Text] [Related]
14. 7T MR Thermometry technique for validation of system-predicted SAR with a home-built radiofrequency wrist coil. Fagan AJ, Jacobs PS, Hulshizer TC, Rossman PJ, Frick MA, Amrami KK, Felmlee JP. Med Phys; 2021 Feb 07; 48(2):781-790. PubMed ID: 33294999 [Abstract] [Full Text] [Related]
15. Observation and correction of transient cavitation-induced PRFS thermometry artifacts during radiofrequency ablation, using simultaneous ultrasound/MR imaging. Viallon M, Terraz S, Roland J, Dumont E, Becker CD, Salomir R. Med Phys; 2010 Apr 07; 37(4):1491-506. PubMed ID: 20443470 [Abstract] [Full Text] [Related]
16. 8.0-Tesla human MR system: temperature changes associated with radiofrequency-induced heating of a head phantom. Kangarlu A, Shellock FG, Chakeres DW. J Magn Reson Imaging; 2003 Feb 07; 17(2):220-6. PubMed ID: 12541230 [Abstract] [Full Text] [Related]
17. Radiofrequency heating studies on anesthetized swine using fractionated dipole antennas at 10.5 T. Eryaman Y, Lagore RL, Ertürk MA, Utecht L, Zhang P, Torrado-Carvajal A, Türk EA, DelaBarre L, Metzger GJ, Adriany G, Uğurbil K, Vaughan JT. Magn Reson Med; 2018 Jan 07; 79(1):479-488. PubMed ID: 28370375 [Abstract] [Full Text] [Related]
18. Performance and use of current sheet antennae for RF-hyperthermia of a phantom monitored by 3 tesla MR-thermography. Hoffmann W, Rhein KH, Wojcik F, Noeske R, Seifert F, Wlodarczyk W, Fähling H, Wust P, Rinneberg H. Int J Hyperthermia; 2002 Jan 07; 18(5):454-71. PubMed ID: 12227931 [Abstract] [Full Text] [Related]
19. Detailing radio frequency heating induced by coronary stents: a 7.0 Tesla magnetic resonance study. Santoro D, Winter L, Müller A, Vogt J, Renz W, Ozerdem C, Grässl A, Tkachenko V, Schulz-Menger J, Niendorf T. PLoS One; 2012 Jan 07; 7(11):e49963. PubMed ID: 23185498 [Abstract] [Full Text] [Related]
20. Design and Characterization of an RF Applicator for In Vitro Tests of Electromagnetic Hyperthermia. Ferrero R, Androulakis I, Martino L, Nadar R, van Rhoon GC, Manzin A. Sensors (Basel); 2022 May 10; 22(10):. PubMed ID: 35632018 [Abstract] [Full Text] [Related] Page: [Next] [New Search]