These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


200 related items for PubMed ID: 26394838

  • 1. Power enhancement of heat engines via correlated thermalization in a three-level "working fluid".
    Gelbwaser-Klimovsky D, Niedenzu W, Brumer P, Kurizki G.
    Sci Rep; 2015 Sep 23; 5():14413. PubMed ID: 26394838
    [Abstract] [Full Text] [Related]

  • 2. Performance limits of multilevel and multipartite quantum heat machines.
    Niedenzu W, Gelbwaser-Klimovsky D, Kurizki G.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct 23; 92(4):042123. PubMed ID: 26565184
    [Abstract] [Full Text] [Related]

  • 3. Power and efficiency of a thermal engine with a coherent bath.
    Guff T, Daryanoosh S, Baragiola BQ, Gilchrist A.
    Phys Rev E; 2019 Sep 23; 100(3-1):032129. PubMed ID: 31639983
    [Abstract] [Full Text] [Related]

  • 4. Efficiency at maximum power of a laser quantum heat engine enhanced by noise-induced coherence.
    Dorfman KE, Xu D, Cao J.
    Phys Rev E; 2018 Apr 23; 97(4-1):042120. PubMed ID: 29758726
    [Abstract] [Full Text] [Related]

  • 5. Endoreversible quantum heat engines in the linear response regime.
    Wang H, He J, Wang J.
    Phys Rev E; 2017 Jul 23; 96(1-1):012152. PubMed ID: 29347192
    [Abstract] [Full Text] [Related]

  • 6. A quantum-dot heat engine operating close to the thermodynamic efficiency limits.
    Josefsson M, Svilans A, Burke AM, Hoffmann EA, Fahlvik S, Thelander C, Leijnse M, Linke H.
    Nat Nanotechnol; 2018 Oct 23; 13(10):920-924. PubMed ID: 30013221
    [Abstract] [Full Text] [Related]

  • 7. Quantum heat engine with coupled superconducting resonators.
    Hardal AÜC, Aslan N, Wilson CM, Müstecaplıoğlu ÖE.
    Phys Rev E; 2017 Dec 23; 96(6-1):062120. PubMed ID: 29347310
    [Abstract] [Full Text] [Related]

  • 8. Performance of a multilevel quantum heat engine of an ideal N-particle Fermi system.
    Wang R, Wang J, He J, Ma Y.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug 23; 86(2 Pt 1):021133. PubMed ID: 23005748
    [Abstract] [Full Text] [Related]

  • 9. Autonomous quantum heat engine based on non-Markovian dynamics of an optomechanical Hamiltonian.
    Rasola M, Möttönen M.
    Sci Rep; 2024 Apr 24; 14(1):9448. PubMed ID: 38658607
    [Abstract] [Full Text] [Related]

  • 10. Quantum thermodynamic cycles and quantum heat engines.
    Quan HT, Liu YX, Sun CP, Nori F.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep 24; 76(3 Pt 1):031105. PubMed ID: 17930197
    [Abstract] [Full Text] [Related]

  • 11. Universal Coherence-Induced Power Losses of Quantum Heat Engines in Linear Response.
    Brandner K, Bauer M, Seifert U.
    Phys Rev Lett; 2017 Oct 27; 119(17):170602. PubMed ID: 29219425
    [Abstract] [Full Text] [Related]

  • 12. Dynamical control of quantum heat engines using exceptional points.
    Zhang JW, Zhang JQ, Ding GY, Li JC, Bu JT, Wang B, Yan LL, Su SL, Chen L, Nori F, Özdemir ŞK, Zhou F, Jing H, Feng M.
    Nat Commun; 2022 Oct 20; 13(1):6225. PubMed ID: 36266331
    [Abstract] [Full Text] [Related]

  • 13. Performance of discrete heat engines and heat pumps in finite time.
    Feldmann T, Kosloff R.
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May 20; 61(5A):4774-90. PubMed ID: 11031518
    [Abstract] [Full Text] [Related]

  • 14. Three-level laser heat engine at optimal performance with ecological function.
    Singh V, Johal RS.
    Phys Rev E; 2019 Jul 20; 100(1-1):012138. PubMed ID: 31499856
    [Abstract] [Full Text] [Related]

  • 15. Heat-machine control by quantum-state preparation: from quantum engines to refrigerators.
    Gelbwaser-Klimovsky D, Kurizki G.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug 20; 90(2):022102. PubMed ID: 25215684
    [Abstract] [Full Text] [Related]

  • 16. Quantum Photovoltaic Cells Driven by Photon Pulses.
    Oh S, Park JJ, Nha H.
    Entropy (Basel); 2020 Jun 20; 22(6):. PubMed ID: 33286465
    [Abstract] [Full Text] [Related]

  • 17. Finite-time quantum Otto engine: Surpassing the quasistatic efficiency due to friction.
    Lee S, Ha M, Park JM, Jeong H.
    Phys Rev E; 2020 Feb 20; 101(2-1):022127. PubMed ID: 32168587
    [Abstract] [Full Text] [Related]

  • 18. Work extremum principle: structure and function of quantum heat engines.
    Allahverdyan AE, Johal RS, Mahler G.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr 20; 77(4 Pt 1):041118. PubMed ID: 18517589
    [Abstract] [Full Text] [Related]

  • 19. Algorithmic quantum heat engines.
    Köse E, Çakmak S, Gençten A, Kominis IK, Müstecaplıoğlu ÖE.
    Phys Rev E; 2019 Jul 20; 100(1-1):012109. PubMed ID: 31499932
    [Abstract] [Full Text] [Related]

  • 20. Energetics of a simple microscopic heat engine.
    Asfaw M, Bekele M.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov 20; 72(5 Pt 2):056109. PubMed ID: 16383690
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.