These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
161 related items for PubMed ID: 26395674
1. Continuous ultraviolet irradiation increases the adverse effects of photoreactive nanoparticles on the early development of Oryzias latipes. Shin YJ, Nam SH, An YJ. Environ Toxicol Chem; 2016 May; 35(5):1195-200. PubMed ID: 26395674 [Abstract] [Full Text] [Related]
2. Comparative study on toxicity of ZnO and TiO2 nanoparticles on Artemia salina: effect of pre-UV-A and visible light irradiation. Bhuvaneshwari M, Sagar B, Doshi S, Chandrasekaran N, Mukherjee A. Environ Sci Pollut Res Int; 2017 Feb; 24(6):5633-5646. PubMed ID: 28039626 [Abstract] [Full Text] [Related]
3. The embryotoxicity of ZnO nanoparticles to marine medaka, Oryzias melastigma. Cong Y, Jin F, Wang J, Mu J. Aquat Toxicol; 2017 Apr; 185():11-18. PubMed ID: 28157544 [Abstract] [Full Text] [Related]
4. Cytotoxicity of ZnO NPs towards fresh water algae Scenedesmus obliquus at low exposure concentrations in UV-C, visible and dark conditions. Bhuvaneshwari M, Iswarya V, Archanaa S, Madhu GM, Kumar GKS, Nagarajan R, Chandrasekaran N, Mukherjee A. Aquat Toxicol; 2015 May; 162():29-38. PubMed ID: 25770694 [Abstract] [Full Text] [Related]
5. Irradiation-Enhanced Cytotoxicity of Zinc Oxide Nanoparticles. Yang Q, Ma Y. Int J Toxicol; 2014 May; 33(3):187-203. PubMed ID: 24700570 [Abstract] [Full Text] [Related]
6. Japanese medaka exposed to gold nanoparticles: Only embryonic exposure generates irreversible hatching failure, developmental failure, and mortality of sac-fry. Shin YJ, Nam SH, An YJ. Comp Biochem Physiol C Toxicol Pharmacol; 2014 Apr; 161():26-32. PubMed ID: 24440878 [Abstract] [Full Text] [Related]
7. Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: no evidence of enhanced algal toxicity under UV pre-irradiation. Lee WM, An YJ. Chemosphere; 2013 Apr; 91(4):536-44. PubMed ID: 23357865 [Abstract] [Full Text] [Related]
8. Zinc oxide nanoparticle toxicity in embryonic zebrafish: Mitigation with different natural organic matter. Kteeba SM, El-Adawi HI, El-Rayis OA, El-Ghobashy AE, Schuld JL, Svoboda KR, Guo L. Environ Pollut; 2017 Nov; 230():1125-1140. PubMed ID: 28841783 [Abstract] [Full Text] [Related]
9. Trade-offs in ecosystem impacts from nanomaterial versus organic chemical ultraviolet filters in sunscreens. Hanigan D, Truong L, Schoepf J, Nosaka T, Mulchandani A, Tanguay RL, Westerhoff P. Water Res; 2018 Aug 01; 139():281-290. PubMed ID: 29656193 [Abstract] [Full Text] [Related]
10. UVB irradiation-enhanced zinc oxide nanoparticles-induced DNA damage and cell death in mouse skin. Pal A, Alam S, Mittal S, Arjaria N, Shankar J, Kumar M, Singh D, Pandey AK, Ansari KM. Mutat Res Genet Toxicol Environ Mutagen; 2016 Sep 01; 807():15-24. PubMed ID: 27542711 [Abstract] [Full Text] [Related]
11. Developmental Toxicity of Zinc Oxide Nanoparticles to Zebrafish (Danio rerio): A Transcriptomic Analysis. Choi JS, Kim RO, Yoon S, Kim WK. PLoS One; 2016 Sep 01; 11(8):e0160763. PubMed ID: 27504894 [Abstract] [Full Text] [Related]
12. Co-exposure of ZnO nanoparticles and UV radiation to Daphnia magna and Danio rerio: Combined effects rather than protection. Azevedo SL, Ribeiro F, Jurkschat K, Soares AM, Loureiro S. Environ Toxicol Chem; 2016 Feb 01; 35(2):458-67. PubMed ID: 26275073 [Abstract] [Full Text] [Related]
13. Hazard profiling of a combinatorial library of zinc oxide nanoparticles: Ameliorating light and dark toxicity through surface passivation. George S, Yin H, Liu Z, Shen S, Cole I, Khiong CW. J Hazard Mater; 2022 Jul 15; 434():128825. PubMed ID: 35430455 [Abstract] [Full Text] [Related]
14. Accelerated ecotoxicity of photoreactive nanoparticles on Moina macrocopa. Nam SH, Shin YJ, An YJ. Environ Health Toxicol; 2017 Jul 15; 32():e2017007. PubMed ID: 28331171 [Abstract] [Full Text] [Related]
15. Impact of solar UV radiation on toxicity of ZnO nanoparticles through photocatalytic reactive oxygen species (ROS) generation and photo-induced dissolution. Ma H, Wallis LK, Diamond S, Li S, Canas-Carrell J, Parra A. Environ Pollut; 2014 Oct 15; 193():165-172. PubMed ID: 25033018 [Abstract] [Full Text] [Related]
16. Effect of ZnO and TiO₂ nanoparticles preilluminated with UVA and UVB light on Escherichia coli and Bacillus subtilis. Kim SW, An YJ. Appl Microbiol Biotechnol; 2012 Jul 15; 95(1):243-53. PubMed ID: 22615055 [Abstract] [Full Text] [Related]
17. Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments. Odzak N, Kistler D, Sigg L. Environ Pollut; 2017 Jul 15; 226():1-11. PubMed ID: 28395184 [Abstract] [Full Text] [Related]
18. Effect of fluorescent silica nanoparticles in embryo and larva of Oryzias latipes: sonic effect in nanoparticle dispersion. Lee WM, Ha SW, Yang CY, Lee JK, An YJ. Chemosphere; 2011 Jan 15; 82(3):451-9. PubMed ID: 20952045 [Abstract] [Full Text] [Related]
19. Zinc oxide nanoparticles: genotoxicity, interactions with UV-light and cell-transforming potential. Demir E, Akça H, Kaya B, Burgucu D, Tokgün O, Turna F, Aksakal S, Vales G, Creus A, Marcos R. J Hazard Mater; 2014 Jan 15; 264():420-9. PubMed ID: 24316814 [Abstract] [Full Text] [Related]
20. Phototoxicity of oil sands-derived polycyclic aromatic compounds to Japanese medaka (Oryzias latipes) embryos. Farwell AJ, Nero V, Croft M, Rhodes S, Dixon DG. Environ Toxicol Chem; 2006 Dec 15; 25(12):3266-74. PubMed ID: 17220098 [Abstract] [Full Text] [Related] Page: [Next] [New Search]